PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy analysis of underwater energy storage system based on compressed air

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the very intensive development of renewable energy sources, producing electricity in irregular and unpredictable way, storage plays an increasingly important role in the current energy system. Currently used systems for storing electricity on a large scale include only pumped storage and compressed air energy storage. The paper presents energy analysis of three underwater energy storage systems based on compressed air without recuperation, and with recuperation and adiabatic. Balance calculations for selected configuration of the system was performed. The efficiency of storage of electricity was calculated using four different definitions.
Słowa kluczowe
Rocznik
Tom
Strony
151--160
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska, 00–665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska, 00–665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska, 00–665 Warsaw, Poland
Bibliografia
  • [1] THERMINOL Heat Transfer Fluids by Eastman. http://www.therminol.com/products/ /Therminol-55 (accessed on 30.05.2016).
  • [2] AspenTech: ‘HYSYS 3.2 Operations Guide’, 2003.
  • [3] Ataer O.E.: Storage of thermal energy. Encyclopedia of Life Support 2006.
  • [4] Badyda K., Milewski J.: Compressed air storage systems as a peak looping power station in Polish conditions. In: Proc. Int. Conf. Power Eng., ICOPE 2009, 2009.
  • [5] Badyda K., Milewski J.: Energy storage using CAES systems. In: ‘Contemporary problems of gas energy and gas industry’, Wyd. ITC Politechniki Śląskiej, Gliwice 2009 (in Polish).
  • [6] Badyda K., Milewski J.: Thermodynamic analysis of compressed air energy storage working conditions. Arch. Energ. 42(2012), 1, 53–68.
  • [7] Cheung B.C., Carriveau R., Ting D.S.: Multiobjective optimization of an underwater compressed air energy storage system using genetic algorithm. Energy 74(2014), 396–404.
  • [8] Cheung B.C., Carriveau R., Ting D.S.: Parameters affecting scalable underwater compressed air energy storage. Appl. Energ. 134(2014b), 239–247.
  • [9] Denholm P.,. Kulcinski G.L: Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energ. Convers. Manage. 45(2004), 13, 2153–2172.
  • [10] Hyprotech: HYSYS 3.2 Dynamic Modeling, 2003.
  • [11] Lund H., Salgi G., Elmegaard B., Andersen A.N.: Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl. Therm. Eng. 29(2009), 5, 799–806.
  • [12] Luo X., Wang J., Dooner M., Clarke J., Krupke C.: Overview of current development in compressed air energy storage technology. Energy Procedia 62(2014), 603–611.
  • [13] Mason J.E., Archer C.L.: Baseload electricity from wind via compressed air energy storage (CAES). Renew. Sust. Energ. Rev. 16(2012), 2, 1099–1109.
  • [14] Peng D.-Y., Robinson D.B.: A new two-constant equation of state. Indust. Eng. Chem. Fundamen. 15(1976), 1, 59–64.
  • [15] Pimm A.J., Garvey S.D., de Jong M.: Design and testing of energy bags for underwater compressed air energy storage. Energy 66(2014), 496–508.
  • [16] Satkin M., Noorollahi Y., Abbaspour M., Yousefi H.: Multi criteria site selection model for wind-compressed air energy storage power plants in Iran. Renew. Sust. Energ. Rev. 32(2014), 579–590.
  • [17] Szabłowski Ł., Milewski J.: Dynamic analysis of compressed air energy storage in the car. J. Power Technol. 91(2011), 1, 23–36.
  • [18] Vasel-Be-Hagh A., Carriveau R., Ting D.S.-K.: Numerical simulation of flow past an underwater energy storage balloon. Comput. Fluids 88(2013), 272–286.
  • [19] Vasel-Be-Hagh, A., Carriveau R., Ting D.S.-K.: Underwater compressed air energy storage improved through Vortex Hydro Energy. Sust. Energ. Technol. Assess. 7(2014), 1–5.
  • [20] Vasel-Be-Hagh, A., Carriveau R., and Ting D.S.-K.: Structural analysis of an underwater energy storage accumulator. Sust. Energ. Technol. Assess. 11(2015), 165–172.
  • [21] Yucekaya A.: The operational economics of compressed air energy storage systems under uncertainty. Renew. Sust. Energ. Rev. 22(2013), 298–305
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3624496f-5ed1-4720-aa70-c331de899c6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.