PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Cellular Cast Structures for Improving Heat Transfer in Thermal Energy Storage Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For improving heat transfer in the thermal energy storage system (TES), cast aluminum cellular structures were designed, optimized, and produced by investment casting. The pattern was 3D printed from polylactide (PLA) polymer and then subjected to molding and heat treatment. Selected casting parameters, i.e. temperature of the mold and poured metal, as well as low pressure (vacuum), allowed to production of a complex, thin-walled casting. To evaluate the effectiveness of the structures (enhancers), a lab-scale heat accumulator was constructed and filled with phase change material (PCM) composed of KNO3 and NaNO3 salts. Thermal cycling, including charging and discharging of the accumulator, was analyzed and compared between systems with pure PCM bed and the one equipped with the produced enhancer. To protect aluminum casting against corrosion with molten salts, nickel plating was applied. Process parameters, such as plating process time and nickel subcoating application time, were determined. Microscopic observations confirmed high-quality, continuous coating on aluminum casting surfaces with characteristic microgrooves remaining after the printed pattern.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Lightweight Elements Engineering, Foundry and Automation, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Lightweight Elements Engineering, Foundry and Automation, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Lightweight Elements Engineering, Foundry and Automation, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Lightweight Elements Engineering, Foundry and Automation, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Lightweight Elements Engineering, Foundry and Automation, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
Bibliografia
  • [1] X. Dong, G. Gao, X. Zhao, Z. Qiu, C. Li, J. Zhang, P. Zheng, Investigation on heat transfer and phase transition in phase change material (PCM) balls and cold energy storage tank. J. Energy Storage 50, 104695 (2022). DOI: https://doi.org/10.1016/j.est.2022.104695
  • [2] T. Pirasaci, Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season. Energy 207, 118176 (2020). DOI: https://doi.org/10.1016/j.energy.2020.118176
  • [3] M.Y. Abdelsalam, P. Sarafraz, J.S. Cotton, M.F. Lightstone, Heat transfer characteristics of a hybrid thermal energy storage tank with phase change materials (PCMs) during indirect charging using isothermal coil heat exchanger. Sol. Energy 157, 462-476 (2017). DOI: https://doi.org/10.1016/j.solener.2017.08.043
  • [4] K.S. Dinesh, M. Chandrashekara, A systematic review of thermal energy storage and phase change materials. NanoWorld. J. 9, s1, S364-S368 (2023). DOI: https://doi.org/10.17756/nwj.2023-s1-071
  • [5] B. Anwar, M.A.A. Noon, H. Koten, Phase change materials (PCM) and their application. In: H. Koten (ed.), Recent researches in engineering sciences 2021, Livre de Lyon (2021)
  • [6] M.A.A. Noon, B. Anwar, H. Koten, Design and fabrication of Solar Heat Cell Using Phase Change Materials. Tech. J. 26, 1, 60-70 (2021), Retrieved from https://tj.uettaxila.edu.pk/index.php/technical-journal/article/view/1508
  • [7] S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin, L. Tian, Z. Li, G. Wang, L. Zhao, Y. Yan, A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew. Sust. Energ. Rev. 135, 110127 (2021). DOI: https://doi.org/10.1016/j.rser.2020.110127
  • [8] X. Huang, C. Sun, Z. Chen, Y. Han, Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams. Int. J. Therm. Sci. 170, 107151 (2021). DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107151
  • [9] M. Aramesh, B. Shabani, Metal foam-phase change material composites for thermal energy storage: A review of performance parameters. Renew. Sust. Energ. Rev. 155, 111919 (2022). DOI: https://doi.org/10.1016/j.rser.2021.111919
  • [10] C.Y. Zhao, W. Lu, Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol. Energy 84, 8, 1402-1412 (2010). DOI: https://doi.org/10.1016/j.solener.2010.04.022
  • [11] P. Zhang, X. Xiao, Z.W. Ma, A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Appl. Energ. 165, 472-510 (2016). DOI: https://doi.org/10.1016/j.apenergy.2015.12.043
  • [12] Z. Wang, H. Zhang, B. Dou, G. Zhang, W. Wu, X. Zhou, Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials. Appl. Therm. Eng. 201, Part B, 117778 (2022). DOI: https://doi.org/10.1016/j.applthermaleng.2021.117778
  • [13] K. Lafdi, M. Almajali, O. Huzayyin, Thermal properties of copper-coated carbon foams. Carbon 47, 11, 2620-2626 (2009). DOI: https://doi.org/10.1016/j.carbon.2009.05.014
  • [14] H. Schmit, C. Rathgeber, P. Hoock, S. Hiebler, Critical review on measured phase transition enthalpies of salt hydrates in the context of solid-liquid phase change materials. Thermochim. Acta. 683, 178477 (2020). DOI: https://doi.org/10.1016/j.tca.2019.178477
  • [15] Z. Li, Y. Lu, R. Huang, J. Chang, X. Yu, R. Jiang, X. Yu, A.P. Roskilly, Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Appl. Energy 283, 116277 (2021). DOI: https://doi.org/10.1016/j.apenergy.2020.116277
  • [16] U. Chadha, S.K. Selvaraj, H. Pant, A. Arora, D. Shukla, I. Sancheti, A. Chadha, D. Srivastava, M. Khanna, S.R. Kishore, V. Paramasivam, Phase change materials in metal casting processes: a critical review and future possibilities. Adv. Mater. Sci. Eng. 7520308 (2022). DOI: https://doi.org/10.1155/2022/7520308
  • [17] B. Xu, P. Li, C. Chan, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl. Energy 160, 286-307 (2015). DOI: https://doi.org/10.1016/j.apenergy.2015.09.016
  • [18] C. Vargel, Corrosion of aluminium, 2004 Elsevier.
  • [19] K. Labisz, L.A. Dobrzański, J. Konieczny, Anodization of cast aluminum alloys produced by different casting methods. Arch. Foundry Eng. 3, 8, 45-50 (2008).
  • [20] D. Kuang, L. Xu, L. Liu, W. Hu, Y. Wu, Graphene-nickel composites. Appl. Surf. Sci. 273, 484-490 (2013). DOI: https://doi.org/10.1016/j.apsusc.2013.02.066
  • [21] T. Oya, T. Nomura, M. Tsubota, N. Okinaka, T. Akiyama, Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng. 61, 825-828 (2013). DOI: https://doi.org/10.1016/j.applthermaleng.2012.05.033
  • [22] T. Borkar, H. Mohseni, J. Hwang, T. W. Scharf, J.S. Tiley, S.H. Hong, R. Banerjee, Excellent strength-ductility combination in nickel-graphite nanoplatelet (GNP/Ni) nanocomposites. J. Alloy. compd. 646, 135-144 (2015). DOI: https://doi.org/10.1016/j.jallcom.2015.06.013
  • [23] R.D. Rieke, Preparation of organometallic compounds from highly reactive metal powders. Science 246, 4935, 1260-1264 (1989). DOI: https://doi.org/10.1126/science.246.4935.1260
  • [24] O. Sadiku-Agboola, E.R. Sadiku, O.F. Biotidara, The properties and the effect of operating parameters on nickel plating (review). Int. J. Phys. Sci. 7, 3, 349-360 (2012). DOI: https://doi.org/10.5897/iJPS11.1163
  • [25] Q. Bao, W. Zheng, L. Chen, Z. Xu, J. Han, C. Zhu, Optimization of plating process and corrosion behavior of nanocrystalline Ni-Mo coatings on pure aluminum. colloid. Surface. A. 636, 128128 (2022). DOI: https://doi.org/10.1016/j.colsurfa.2021.128128
  • [26] K.O. Cooke, P. Chudasama, Aluminium surface impregnated with nano constituents for enhanced mechanical performance. Results. Phys. 40, 105826 (2022). DOI: https://doi.org/10.1016/j.rinp.2022.105826
  • [27] A. Dmitruk, K. Naplocha, J. Grzęda, J. W. Kaczmar, Aluminum inserts for enhancing heat transfer in PCM accumulator. Materials 13, 2, 415 (2020). DOI: https://doi.org/10.3390/ma13020415
  • [28] W. Gai, W. Liu, Z. Deng, J. Zhou, Reaction of Al powder with water for hydrogen generation under ambient condition. Int. J. Hydrogen. Energ. 37, 17, 13132-13140 (2012). DOI: https://doi.org/10.1016/j.ijhydene.2012.04.025
  • [29] G. Kear, B.D. Barker, F.C. Walsh, Electrochemical corrosion of unalloyed copper in chloride media - a critical review. Corros. Sci. 46, 1, 109-135 (2004). DOI: https://doi.org/10.1016/S0010-938X(02)00257-3
  • [30] F. Clarelli, B. De Filippo, R. Natalini, Mathematical model of copper corrosion. Appl. Math. Model. 38, 19-20, 4804-4816 (2014). DOI: https://doi.org/10.1016/j.apm.2014.03.040
  • [31] D. Knotkova, K. Barton, Effects of acid deposition on corrosion of metals. Atmos. Environ. A-Gen. 26, 17, 3169-3177 (1992). DOI: https://doi.org/10.1016/0960-1686(92)90473-X
  • [32] X.G. Zhang, Corrosion and Electrochemistry of Zinc, 1996 Springer Science+ Business Media, LLC, New York.
  • [33] D.D.L. Chung, Review - Graphite. J. Mater. Sci. 37, 1475-1489 (2002). DOI: https://doi.org/10.1023/A:1014915307738
  • [34] R. Backreedy, J.M. Jones, M. Pourkashanian, A. Williams, A study of the reaction of oxygen with graphite: model chemistry. Faraday Discuss. 119, 385-394 (2001). DOI: https://doi.org/10.1039/B102063N
  • [35] G. Mózes (ed.), Paraffin Products, 1983 Elsevier.
  • [36] T. Bauer, D. Laing, R. Tamme, Characterization of sodium nitrate as phase change material. Int. J. Thermophys. 33, 91-104 (2012). DOI: https://doi.org/10.1007/s10765-011-1113-9
  • [37] B.D. Iverson, S.T. Broome, A.M. Kruizenga, J.G. Cordaro, Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase. Sol. Energy 86, 10, 2897-2911 (2012). DOI: https://doi.org/10.1016/j.solener.2012.03.011
  • [38] K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for concentrating solar power systems - a review. Appl. Energ. 146, 383-396 (2015). DOI: https://doi.org/10.1016/j.apenergy.2015.01.125
  • [39] R.W. Bradshaw, R.W. Carling, A review of the chemical and physical properties of molten alkali nitrate salts and their effect on materials used for solar central receivers. Proc. Vol. 1987-7, 959-969 (1987). DOI: https://doi.org/10.1149/198707.0959PV
  • [40] Á.G. Fernández, L.F. Cabeza, Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review. Sol. Energ. Mat. Sol. C. 194, 160-165 (2019). DOI: https://doi.org/10.1016/j.solmat.2019.02.012
  • [41] C.M. Kramer, Screening tests of sodium nitrate and potassium nitrate decomposition. Sol. Energy 29, 5, 437-439 (1982). DOI: https://doi.org/10.1016/0038-092X(82)90082-2
  • [42] Z. Khan, Z. Khan, A. Ghafoor, A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers. Manag. 115, 132-158 (2016). DOI: https://doi.org/10.1016/j.enconman.2016.02.045
Uwagi
This work has been developed in the frame of the ASTEP project, funded by the European Union’s Horizon 2020 research program under grant agreement N◦884411. Disclosure: the present publication reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained therein.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-361aee8e-97d4-495c-a3ea-0616de914c7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.