PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminium hybrid laminates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to investigate the impact behaviour and damage characterization of carbon fibre reinforced aluminium hybrid laminates (Al/CFRP) in comparison to classic carbon fibre reinforced polymer (CFRP) at low-velocity and low-energy impact. Impact damage characteristic with damage initiation and progression, internal failure modes and understanding of the role of the metal layers in the impact behaviour under low-energy were examined and discussed. The damage mechanism of the tested laminates is very complex. There is an internal degradation of the material, with the plastic deformation in case of fibre metal laminates. Characteristic matrix cracks (bending and shearing cracks) running at the fibre–matrix interface in composite layers are the first damage mode. The critical damage mode is delaminations observed between composite layers with different orientation as well as delaminations at the metal–composite interface in fibre metal laminates. For the tested materials, particularly carbon fibre reinforced composites, the absorbed impact energy is mainly connected with elastic response and damage of the laminate. In case of fibre metal laminates the absorbed energy is also connected with plastic deformation of the laminate, occurring especially in the metal layers. High impact resistance of fibre metal laminates indicates that metal (aluminium) layers may prevent delamination propagation and impactor penetration.
Rocznik
Strony
925--932
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
autor
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Air Force Institute of Technology, Księcia Bolesława 6, 01-494 Warsaw, Poland
Bibliografia
  • [1] F. Bagnoli, M. Bernabei, D. Figueroa-Gordon, P.E. Irving, The response of aluminium/GLARE hybrid materials to impact and to in-plane fatigue, Material Science and Engineering A523 (2009) 118–124.
  • [2] S. Sánchez-Sáez, E. Barbero, C. Navarro, Compressive residual strength at low temperatures of composite laminates subjected to low-velocity impacts, Composite Structures 85 (2008) 226–232.
  • [3] W.A. Morais, S.N. Monteiro, J.R.M. d'Almeida, Evaluation of repeated low energy impact damage in carbon – epoxy composite materials, Composite Structures 67 (2005) 307–315.
  • [4] Z. Guan, Ch Yang, Low-velocity impact and damage process of composite laminates, Journal of Composite Materials 36 (2002) 851–871.
  • [5] F.J. Yang, W.J. Cantwell, Impact damage initiation in composite materials, Composite Science and Technology 70 (2010) 336–342.
  • [6] N.H. Tai, M.C. Yipa, J.L. Lin, Effects of low-energy impact on the fatigue behavior of carbon/epoxy composites, Composite Science and Technology 58 (1998) 1–8.
  • [7] W.J. Cantwell, P. Curtis, J. Morton, An assessment of the impact performance of CFRP reinforced with high strain carbon fibres, Composite Science and Technology 25 (1986) 133–148.
  • [8] M.O.W. Richardson, M.J. Wisheart, Review of low-velocity impact properties of composite materials, Composites Part A 27 (1996) 1123–1131.
  • [9] G.A.O. Davies, X. Zhang, Impact damage prediction in carbon composite structures, International Journal of Impact Engineering 16 (1994) 149–170.
  • [10] S.X. Wang, L.Z. Wu, L. Ma, Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates, Materials Design 31 (2010) 118–125.
  • [11] A.F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International Materials Park, 2005.
  • [12] M.S. Sohn, X.Z. Hua, J.K. Kimb, L. Walker, Impact damage characterization of carbon fibre/epoxy composites with multi-layer reinforcement, Composites Part B 31 (2000) 681–691.
  • [13] R.C. Batra, G. Gopinath, J.Q. Zheng, Damage and failure in low energy impact of fiber–reinforced polymeric composite laminates, Composites Structures 94 (2012) 540–547.
  • [14] T.W. Shyr, Y.H. Pan, Impact resistance and damage characteristics of composite laminates, Composite Structures 62 (2003) 193–203.
  • [15] H. Ullah, A.A. Abdel-Wahab, A.R. Harland, V.V. Silberschmidt, Damage in woven CFRP laminates subjected to low velocity impacts, Journal of Physics: Conference Series 382 (2012) 1–6.
  • [16] A. Vlot, J.W. Gunnink, Fiber Metal Laminates: An Introduction, Kluwer Academic Publishers L.B., Dordrecht, 2001.
  • [17] L.B. Vogelesang, A. Vlot, Development of fibre metal laminates for advanced aerospace structures, Journal of Material Process and Technology 103 (2000) 1–5.
  • [18] G. Wu, J.M. Yang, The mechanical behaviour of glare laminates for aircraft structures, JOM 57 (1) (2005) 72–79.
  • [19] S.H. Song, Y.S. Byun, T.W. Ku, W.J. Song, J. Kim, B.S. Kang, Experimental, Numerical investigation on impact performance of carbon reinforced aluminum laminates, Journal of Material Science and Technology 26 (4) (2010) 327–332.
  • [20] H. Nakatani, T. Kosaka, K. Osaka, Y. Sawada, Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact, Composites Part A 42 (2011) 772–781.
  • [21] G. Caprino, G. Spatarob, S. Del Luongo, Low-velocity impact behavior of fibre glass – aluminum laminates, Composites Part A 35 (2004) 605–616.
  • [22] J. Fan, Z.W. Guan, W.J. Cantwell, Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading, Composite Structures 93 (2011) 2430–2436.
  • [23] M.R. Abdullah, W.J. Cantwell, The impact resistance of polypropylene-based fibre–metal laminates, Composite Science and Technology 66 (2006) 1682–1693.
  • [24] M. Periasamy, B. Manickam, K. Hariharasubramanian, Impact properties of aluminium – glass fiber reinforced plastics sandwich panels, Materials Research 15 (3) (2012) 347–354.
  • [25] A. Vlot, M. Krull, Impact damage resistance of various fibre metal laminates, in: Proceedings of the 5th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading, 1997.
  • [26] M. Sadighi, R.C. Alderliesten, R. Benedictus, Impact resistance of fiber–metal laminates: a review, International Journal of Impact Engineering 49 (2012) 77–90.
  • [27] B.M. Liaw, Y.X. Liu, E.A. Villars, Impact damage mechanisms in fiber–metal laminates, in: Proceedings of the SEM Annual Conference on Experimental and Applied Mechanics, 2001.
  • [28] F.K. Chang, H.Y. Choi, S.T. Jeng, Study on impact damage in laminated composites, Mechanics of Materials 10 (1990) 83–95.
  • [29] D. Liu, Impact-induced delamination – a view of bending stiffness mismatching, Journal of Composite Materials 22 (1998) 674–692.
  • [30] S. Liu, Z. Kutlu, F.K. Chang, Matrix cracking and delamination in laminated composite beams subjected to a transverse concentrated line load, Journal of Composite Materials 27 (1993) 436–470.
  • [31] R. Hosseinzadeh, M.M. Shokrieh, L. Lessard, Damage behavior of fiber reinforced composite plates subjected to drop weight impacts, Composites Science and Technology 66 (2006) 61–68.
  • [32] M.R. Pearson, M.J. Eaton, C.A. Featherston, K.M. Holford, R. Pullin, Impact damage detection and assessment in composite panels using macro fibre composites transducers, Journal of Physics: Conference Series 305 (2011) 1–10.
  • [33] F. Aymerich, P. Priolo, Characterization of fracture modes in stitched and unstitched cross-ply laminates subjected to low-velocity impact and compression after impact loading, International Journal of Impact Engineering 35 (2008) 591–608.
  • [34] S. Abrate, Low-velocity impact damage, in: Impact on Composite Structures, Cambridge University Press, 1998pp. 135–160 (Chapter 4).
  • [35] E.V. González, P. Maimí, P.P. Camanho, C.S. Lopes, N. Blanco, Effects of ply clustering in laminated composite plates under low-velocity impact loading, Composites Science and Technology 71 (2011) 805–817.
  • [36] O.S. David-West, D.H. Nash, W.M. Banks, An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact, Composite Structures 83 (2008) 247–258.
  • [37] P. Cortés, W.J. Cantwell, The fracture properties of a fibre– metal laminate based on magnesium alloy, Composites Part B 37 (2006) 163–170.
  • [38] F.D. Morinière, R.C. Alderliesten, M. Yarmohammad Tooski, R. Benedictus, Damage evolution in GLARE fibre–metal laminate under repeated low velocity impact tests, Central European Journal of Engineering 2 (4) (2012) 603–611.
  • [39] T. Pärnänen, R. Alderliesten, C. Rans, T. Brander, O. Saarela, Applicability of AZ31B-H24 magnesium in fibre metal laminates – an experimental impact research, Composite Structures 83 (2008) 247–258.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36175953-9e0d-468c-972d-d377aa9f048e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.