Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
High temperature vacuum brazing is a well-known and commonly used method for joining of nickel based elements and subassemblies of gas turbines, both for stationary and aviation applications. Despite the fact that currently used brazing filler metals meet stringent requirements of aviation and energetic industries, a lot of effort is spent on improving operational properties of the joints through modification of chemical composition or brazing process parameters. This paper aims for both of these aspects - its purpose is evaluation of the impact of filler metal composition, brazing gap width and process conditions on the microstructure of joints between sheet metal elements made of Hastelloy X nickel superalloy. Two different Ni-based filler materials (BNi-2 and Amdry 915) were investigated, based on the results of light and scanning electron microscopy evaluations, energy dispersive X-ray spectroscopy and hardness measurements.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1551--1561
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
- Pratt & Whitney Rzeszów S.A., 120 Hetmańska Str., 35-078 Rzeszów, Poland
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Bibliografia
- [1] C. Sponaugle, Pittsburgh Eng. 2 (4), 7-9 (2005).
- [2] J.R. Davis (Ed.), ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International, Materials Park OH (2000).
- [3] K. Singh, Trans. Indian Inst. Met. 67 (5), 601-615 (2014). DOI: https://doi.org/10.1007/s12666-014-0398-3
- [4] http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/x-brochure.pdf?sfvrsn=15b829d4_38, accessed: 15.10.2021.
- [5] R.H. Al-Nafeay, A.O. Al-Roubaiy, H. Omidvar, IOP Conf. Ser.: Mater. Sci. Eng. 1094, 012141 (2021). DOI: https://doi.org/10.1088/1757-899X/1094/1/012141
- [6] W. Miglietti, M. Du Toit, J. Eng. Gas Turbines Power 132 (8), 082102 (2010). DOI: https://doi.org/10.1115/1.3155397
- [7] K. Strzelczak, B. Lisiecka, Prod. Eng. Arch. 16, 12‐15 (2017). DOI: https://doi.org/10.30657/pea.2017.16.03
- [8] M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Sci. Technol. Weld. Joi. 9 (1), 13-21 (2004). DOI: https://doi.org/10.1179/136217104225017099
- [9] Z. Mirski, J. Pabian, T. Wojdat, Arch. Metall. Mater. 66 (4), 1131-1140 (2021). DOI: 10.24425/amm.2021.136438
- [10] M. Singh, R. Asthana, N. Sobczak, J. Mater. Eng. Perform. 29, 4898-4912 (2020). DOI: https://doi.org/10.1007/s11665-020-04934-3
- [11] L. Zhang, J. Manuf. Process. 66, 651-668 (2021). DOI: https://doi.org/10.1016/j.jmapro.2021.04.015
- [12] M. Way, J. Willingham, R. Goodall, R. Int. Mater. Rev. 65 (5), 1-29 (2020). DOI: https://doi.org/10.1080/09506608.2019.1613311
- [13] D. Luo, Y. Xiao, L. Hardwick, R. Snell, M. Way, X. S. Morell, F. Livera, N. Ludford, C. Panwisawas, H. Dong, R. Goodall, Entropy 23 (1), 78 (2021). DOI: https://doi.org/10.3390/e23010078
- [14] M.M. Schwartz (Ed.), Brazing (2nd ed.), ASM International, Materials Park OH (2003).
- [15] A. Elrefaey, High-temperature brazing in aerospace engineering, in: M.C. Chaturvedi (Ed.), Welding and Joining of Aerospace Materials, Woodhead Publishing, Cambridge (2011). DOI: https://doi.org/10.1533/9780857095169.2.345
- [16] B. Ahn, Metals-Basel 11 (7), 1037 (2021). DOI: https://doi.org/10.3390/met11071037
- [17] A. Ghasemi, M. Pouranvari, Sci. Technol. Weld. Joi. 24 (4), 342-351 (2019). DOI: https://doi.org/10.1080/13621718.2018.1553280
- [18] M. Pouranvari, A. Ekrami, A.H. Kokabi, Weld. J. 93 (2), 60s-68s (2014).
- [19] L. Hardwick, P. Rodgers, E. Pickering, R. Goodall, Metall. Trans. A 52, 2534-2548 (2021). DOI: https://doi.org/10.1007/s11661-021-06246-0
- [20] A.A. Ivannikov, B.A. Kalin, O.N. Sevryukov, M.A. Penyaz, I.V. Fedotov, V.E. Misnikov, M.S. Tarasova, Sci. Technol. Weld. Joi. 23 (8), 187-197 (2017). DOI: https://doi.org/10.1080/13621718.2017.1361668
- [21] C. MacIsaac, C.A. Whitman, S.F. Corbin, J. Mater. Sci. 55, 8741-8755 (2020). DOI: https://doi.org/10.1007/s10853-020-04594-7
- [22] O.A. Ojo, N. Richards, M.C. Charturvedi, Sci. Technol. Weld. Joi. 9 (3), 209-220 (2004). DOI: https://doi.org/10.1179/136217104225012175
- [23] Z.S. Yu, R.F. Li, K. Shi, Appl. Mech. Mater. 236-237, 26-30 (2012). DOI: https://doi.org/10.4028/www.scientific.net/AMM.236-237.26
- [24] R.P. Rezende, M.D.M das Neves, Mater. Sci. Forum 1012, 354-359 (2020). DOI: https://doi.org/0.4028/www.scientific.net/MSF.1012.354
- [25] S.K. Tung, L.C. Lim, M.O. Lai, Scr. Mater. 34 (5), 763-769 (1996). DOI: https://doi.org/10.1016/1359-6462(95)00577-3
- [26] A. Ghasemi, M. Pouranvari. Sci. Technol. Weld. Joi. 24 (4), 1-10 (2018). DOI: https://doi.org/10.1080/13621718.2018.1553280
- [27] https://www.oerlikon.com/ecomaXL/files/metco/oerlikon_DSM0285.1_Amdry_915_Series.pdf, accessed: 15.10.2021.
- [28] https://princeizant.com/product/ams-4777, accessed: 15.10.2021.
- [29] J.-C. Zhao, M. Larsen, V. Ravikumar, Mater. Sci. Eng. A293 (1-2), 112-119 (2000). DOI: https://doi.org/10.1016/S0921-5093(00)01049-2
- [30] J. Xie, Y. Ma, M. Ou, W. Xing, L. Zhang, K. Liu, Materials 11 (10), 2065 (2018).
- [31] M.C. Chaturvedi, O.A. Ojo, N.L. Richards, Adv. Technol. Mater. Mater. Process. 6 (2), 206-213 (2004). DOI: https://doi.org/10.2240/azojomo0123.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3610d5ac-5904-447f-b77b-641941cde172