PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inundation maps for extreme flood events: Case study of Sidi Bel Abbes city, Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mapy zasięgu w przypadku ekstremalnych powodzi: przykład miasta Sidi Bel Abbes w Algierii
Języki publikacji
EN
Abstrakty
EN
Hydrodynamic modelling is used to analyse the inundation behaviour of Sidi Bel Abbes city (North-West of Algeria) during extreme flood events. The study reach, 5.4 km in length, is a section of Wadi Mekerra through Sidi Bel Abbes city. Land and bathymetric surveys were used to create a digital terrain model (DTM) of the river channel and the floodplain. By coupling the geometry with hydrologic data, a two dimensional hydrodynamic model was built. The model is based on integrating Saint-Venant shallow waters (depth averaged) equations through Runge–Kutta discontinuous Galerkin numerical scheme. It was calibrated in terms of roughness coefficients on measured values of water surface elevation and discharge registered in the Sidi Bel Abbes gauging station. The objective is to draw the flood maps under extreme river flood event. The results are helpful for local authorities in order to take the appropriate defence measures in the future.
PL
Wykorzystano modelowanie hydrodynamiczne do analizy zasięgu ekstremalnych zjawisk powodziowych w mieście Sidi Bel Abbes w północnozachodniej Algierii. Teren badań stanowił odcinek okresowej rzeki Mekerra długości 5,4 km płynącej przez miasto. Badania naziemne i batymetryczne wykorzystano do zbudowania cyfrowego modelu terenu (DTM) koryta rzeki i obszarów zalewowych. Łącząc geometrię z danymi hydrologicznymi, zbudowano dwuwymiarowy model hydrodynamiczny. Model oparto na integracji równań Saint-Venanta (o uśrednionej głębokości) poprzez nieciągły schemat liczbowy Galerkina wg metody Rungego– Kutty. Model był kalibrowany na współczynnik szorstkości dla zmierzonych wysokości poziomu wody i na odpływ rejestrowany w posterunku pomiarowym Sidi Bel Abbes. Celem pracy było sporządzenie map powodzi w warunkach ekstremalnych zjawisk powodziowych. Wyniki mogą być przydatne władzom lokalnym w podejmowaniu odpowiednich zabiegów ochronnych przed powodzią w przyszłości.
Wydawca
Rocznik
Tom
Strony
19--27
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Nour Bachir University, Department of Technology, El-Bayadh University Center, BP 900, 32000, Algeria
autor
  • Taher Moulay University of Saida, Modeling and Computational Methods Laboratory, Saïda, Algeria
autor
  • Tlemcen University, Department of Hydraulics, Faculty of Engineering, Tlemcen, Algeria
autor
  • Laboratory of Mechanics and Environment ICUBE / INSA, National Institute of the Applied Sciences, Strasbourg, France
autor
  • Taher Moulay University of Saida, Modeling and Computational Methods Laboratory, Saïda, Algeria
Bibliografia
  • ATALLAH M., HAZZAB A. 2013. A Petrov-Galerkin scheme for modeling 1D channel flow with varying width and topography. Acta Mechanica. Vol. 224. Iss. 4 p. 707–725. DOI 10.1007/s00707-012-0781-2.
  • ATALLAH M., HAZZAB A., SEDDINI A., GHENAIM A., KORICHI K.H. 2016. Hydraulic flood routing in an ephemeral channel: Wadi Mekerra, Algeria. Modeling Earth Systems and Environment. Vol. 2. Iss. 182 p. 1–12. DOI 10.1007/s40808-016-0237-0.
  • AURELI F., MIGNOSA P., ZIVERI C., MARANZONI A. 2006. Fully-2D and quasi-2D modelling of flooding scenarios due to embankment failure. In: River flow 2006: Proceedings of the international conference on fluvial hydraulics. Eds. R.M.L. Ferreira, E.C.T.L. Alves, J.G.A.B. Leal, A.H. Cardoso. 6–8 September 2006 Lisbon, Portugal. Taylor & Francis Group, UK, ISBN 0-415-40815-6 p. 1473–1482.
  • BERZ G. 2000. Flood disasters: lessons from the past – worries for the future. Proceedings of the Institution of Civil Engineers – Water and Maritime Engineering. London March 2000. Vol. 142. Iss. 1 p. 3–8.
  • CHOW V.T. 1959. Open-channel hydraulics. New York, USA. McGraw-Hill. ISBN 1932846182 pp. 700.
  • DELIS A.I., KAMPANIS N.A. 2009. Numerical flood simulation by depth averaged free surface flow models. In: Environmental systems. Ed. A. Sydow. Encyclopedia of life support systems (EOLSS). Oxford. Eolss Publishers. Vol. 3 p. 285.
  • DERDOUS O., DJEMILI L., BOUCHEHED H., TACHI S.E. 2015. A GIS based approach for the prediction of the dam break flood hazard – A case study of Zardezas reservoir “Skikda, Algeria”. Journal of Water and Land Development. Vol. 27. Iss. 1 p. 15–20. DOI 10.1515/jwld-2015-0020.
  • DEWAN A.M. 2013. Floods in a megacity: Geospatial techniques in assessing hazards, risk and vulnerability. Dordrecht. Springer. ISBN 978-94-007-5875-9 pp. 199.
  • ESKILSSON C., SHERWIN S.J. 2004. A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations. International Journal for Numerical Methods in Fluids. Vol. 45. Iss. 6 p. 605–623. DOI 10.1002/fld.709.
  • FAGHERAZZI S., RASETARINERA P., HUSSAINI M.Y., FURBISH D.J. 2004. Numerical solution of the dambreak problem with a discontinuous Galerkin method. Journal of Hydraulic Engineering. Vol. 130. Iss. 6 p. 532–539. DOI 10.1061/(ASCE)0733-9429(2004)130:6(532).
  • GOTTLIEB S., SHU C.W. 1998. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation. Vol. 67. Iss. 221 p. 73–85. DOI 10.1090/S0025-5718-98-00913-2.
  • JAWAHAR P., KAMATH H. 2000. A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids. Journal of Computational Physics. Vol. 164 p. 165–203. DOI 10.1006/jcph.2000.6596.
  • JONKMAN S.N. 2005. Global perspectives on loss of human lives caused by floods. Natural Hazards. Vol. 34. Iss. 2 p. 151–175. DOI 10.1007/s11069-004-8891-3.
  • KHAN A.A., LAI W. 2014. Modeling shallow water flows using the discontinuous Galerkin method. Boca Raton, Florida, USA. Taylor & Francis Group, CRC Press. ISBN 9781482226010 pp. 215.
  • KORICHI K.H., HAZZAB A., ATALLAH M. 2016. Flash floods risk analysis in ephemeral streams: a case study on Wadi Mekerra (northwestern Algeria). Arabian Journal of Geosciences. Vol. 9. Iss. 589 p. 1–11. DOI 10.1007/ s12517-016-2624-2.
  • LEE H. 2014. Application of Runge-Kutta discontinuous Galerkin finite element method to shallow water flow. KSCE Journal of Civil Engineering. Vol. 18. Iss. 5 p. 1554–1562. DOI10.1007/s12205-014-0068-3.
  • NSW 2005. Floodplain development manual: The management of flood liable land. Department of Infrastructure. Planning and Natural Resources. New South Wales Government. Australia pp. L1–L9.
  • SAINT-VENANT A.J.C. 1871. Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et l’introduction des marées dans leur lit [Theory of unsteady water movement, applied to floods in rivers and the effect of tidal flows]. Comptes Rendus des séances de l’Académie des Sciences. Vol. 73. Iss. 4 p. 237–240.
  • SARDOU M., MAOUCHE S., MISSOUM H. 2016. Compilation of historical floods catalog of northwestern Algeria: First step towards an atlas of extreme floods. Arabian Journal of Geosciences. Vol. 9. Iss. 6 p. 1–15. DOI 10.1007/s12517-016-2490-y.
  • SCHUBERT J.E., SANDERS B.F. 2012. Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency. Advances in Water Resources. Vol. 41 p. 49–64. DOI 10.1016/j.advwatres.2012.02.012.
  • YING X., JORGESON J., WANG S.S.Y. 2009. Modeling dam-break flows using finite volume method on unstructured grid. Engineering Applications of Computational Fluid Mechanics. Vol. 3. Iss. 2 p. 184–194. DOI 10.1080/19942060.2009.11015264.
  • YING X., KHAN A.A., WANG S.S.Y. 2004. Upwind conservative scheme for the Saint Venant equations. Journal of Hydraulic Engineering. Vol. 130. Iss. 10 p. 977–987. DOI 10.1061/(ASCE)0733-9429(2004)130:10(977).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-360fd054-93a0-488b-a343-c1d270792395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.