PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Stabilization of an epidemic model via an N-periodic approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We analyze the evolution of an infectious disease by combining different groups of a population when the route of transmission is via encounters with free-living virulent organisms that can survive for a long time outside the individual. This study involves matrix analysis of lower triangular block matrices and some of their spectral properties. We propose an N-periodic control strategy in order to stabilize the disease around the disease-free equilibrium point.
Rocznik
Strony
185--195
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Institute for Multidisciplinary Mathematics, Technical University of Valencia, Camino de Vera, 14, 46022 Valencia, Spain
autor
  • Institute for Multidisciplinary Mathematics, Technical University of Valencia, Camino de Vera, 14, 46022 Valencia, Spain
autor
  • Institute for Multidisciplinary Mathematics, Technical University of Valencia, Camino de Vera, 14, 46022 Valencia, Spain
Bibliografia
  • [1] Ainseba, B.E., Benosman, C. and Maga, P. (2010). A model for ovine brucellosis incorporating direct and indirect transmission, Journal of Biological Dynamics 4(1): 2–11, DOI: 10.1080/17513750903171688.
  • [2] EFSA/ECLC (2014). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012, EFSA Journal 12(2): 3547.
  • [3] Beaumont, C., Burie, J., Ducrot, A. and Zongo, P. (2012). Propagation of Salmonella within an industrial hen house, SIAM Journal of Applied Mathematics 72(4): 1113–1148, DOI: 10.1137/110822967.
  • [4] Berman, A. and Plemmons, R. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA.
  • [5] Bittanti, S. (1986). Deterministic and stochastic linear periodic systems, in S. Bittanti (Ed.), Time Series and Linear Systems, Lecture Notes in Control and Information Science, Vol. 86, Springer, Berlin, pp. 141–182.
  • [6] Cantó, B., Coll, C. and Sánchez, E. (2013). Structured parametric epidemic model, International Journal of Computer Mathematics 91(2): 188–197, DOI: 10.1080/00207160.2013.800864.
  • [7] Cantó, B., Coll, C. and Sánchez, E. (2014). A study on vaccination models for a seasonal epidemic process, Applied Mathematics and Computation 243: 152–160, DOI: 10.1016/j.amc.2015.05.104.
  • [8] Ding, D., Ma, Q. and Ding, X. (2014). An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination, International Journal of Applied Mathematics and Computer Science 24(3): 635–646, DOI: 10.2478/amcs-2014-0046.
  • [9] Enatsu, Y., Nakata, Y. and Muroya, Y. (2012). Global stability for a discrete SIS epidemic model with immigration of infectives, Journal of Difference Equations and Applications 18(2): 1913–1924, DOI: 10.1080/10236198.2011.602973.
  • [10] Joh, R., Wang, H., Weis, H. and Weitz, J. (2009). Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bulletin of Mathematical Biology 71(4): 845–862.
  • [11] Li, C. and Schneider, H. (2002). Applications of Perron–Frobenius theory to population dynamics, Journal Mathematical Biology 44(5): 450–462, DOI: 10.1007/s002850100132.
  • [12] Li, X. and Wang, W. (2005). A discrete epidemic model with stage structure, Chaos Solitons & Fractals 26(3): 947–958, DOI: 10.1016/j.chaos.2005.01.063.
  • [13] Liao, S. and Yang, W. (2013). On the dynamics of a vaccination model with multiple transmission ways, International Journal of Applied Mathematics and Computer Science 23(4): 761–772, DOI: 10.2478/amcs-2013-0057.
  • [14] Meyer, R. and Burrus, C. (1975). A unified analysis of multirate and periodically time-varying digital filters, IEEE Transactions on Circuits and Systems 22(3): 162–168.
  • [15] Prevost, K., Beaumont, C. and Magal, P. (2006). Asymptotic behavior in a Salmonella infection model, Mathematical Modelling of Natural Phenomena 2(1): 1–22.
  • [16] Rass, L. and Radcliffe, J. (2000). Global asymptotic convergence results for multitype models, International Journal of Applied Mathematics and Computer Science 10(1): 63–79.
  • [17] van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1): 29–48.
  • [18] Wijaya, K.P., Sutimin, Soewono, E. and G¨otz, T. (2017). On the existence of a nontrivial equilibrium in relation to the basic reproductive number, International Journal of Applied Mathematics and Computer Science 27(3): 623–636, DOI: 10.1515/amcs-2017-0044.
  • [19] Xiao, Y., Clancy, D., French, N. and Bowers, R. (2006). A semi-stochastic model for Salmonella infection in a multi-group herd, Mathematical Biosciences 200(2): 214–233.
  • [20] Zongo, P., Viet, A., Magal, P. and Beaumont, C. (2010). A spatio-temporal model to describe the spread of Salmonella within a laying flock, Journal of Theoretical Biology 267(4): 595–604, DOI: 10.1016/j.jtbi.2010.09.030.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-360b4433-612e-4e4f-92d2-a15822fe5edf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.