PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Pressure on Compaction Process Parameters of Milk Thistle Straw With Binder

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of research on determining the influence of pressure (from 45 to 113 MPa) on the compaction parameters of milk thistle straw (Sylibum marianum) are presented. Raw biomass and biomass containing the addition of a binder in the form of calcium lignosulfonate were investigated. Compaction was carried out using a Z020/TN2S Zwick universal testing machine and a pressing unit with a closed die. It was found that with increasing pressure, the density of material in the chamber and the density of the briquette rises (on average by 33.8%), and the mechanical strength of the finished product grows almost 3.5 times. Increasing the compaction pressure augments the compaction energy demand by an average of 84%. It was shown that the addition of binder increases the density of the briquette (by 22% on average) and raises the mechanical strength by 150% on average.
Twórcy
  • University of Life Sciences in Lublin, Department of Food Engineering and Machines, Lublin, Poland
Bibliografia
  • [1] Danish Z., Wang Z.: Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Science of the Total Environment, 2019, Vol. 670, 1075-1083.
  • [2] Mao G., Huang N., Chen L., Wang H.: Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of the Total Environment, 2018, Vol. 635, 1081-1090.
  • [3] Zdanowska P., Florczak I., Słoma J., Tucki K., Orynycz O., Wasiak A. L., Świć A.: An Evaluation of the Quality and Microstructure of Biodegradable Composites as Contribution towards Better Management of Food Industry Wastes. Sustainability, 2019, Vol. 11(5), 1504.
  • [4] Kwaśniewski D., Kuboń M.: Efektywność ekonomiczna produkcji peletów ze słomy zbóż. Agricultural Engineering, 2016, Vol. 20 (4), 147-155.
  • [5] Lisowski A., Matkowski P., Dąbrowska M., Piątek M., Świętochowski A., Klonowski J., Mieszkalski L., Reshetiuk V.: Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste and Biomass Valorization, 2020, Vol. 11, 63-75. DOI: https://doi.org/10.1007/s12649-018-0458-8.
  • [6] Andrzejewska J., Sadowska K., Mielcarek S.: Effect of sowing date and rate on the yield and flavonolignan content of the fruits of milk thistle (Silybum marianum L. Gaertn.) grown on light soil in a moderate climate. Industrial Crops and Production, 2011, Vol. 33, 462–468. DOI: https://doi.org/10.1016/j.indcrop.2010.10.027.
  • [7] Adamczyk F., Frąckowiak P., Mielec K., Kośmicki Z.: Problematyka badawcza w procesie zagęszczania słomy przeznaczonej na opał. Journal of Research and Application in Agricultural Engineering, 2005, Vol. 50(4), 5-8.
  • [8] Adamczyk F., Frąckowiak P., Mielec K., Kośmicki Z., Zielnica M.: Badania eksperymentalne procesu zagęszczania słomy metodą zwijania. Journal of Research and Application in Agricultural Engineering, 2006, Vol. 51(3), 5-10.
  • [9] Hejft R., Obidzński S.: The pressure agglomeration of the plant materials –the technological and technical innovations. part 1. Journal of Research and Applications in Agricultural Enginering, 2012, Vol. 57(1), 63-65.
  • [10] Bajwa, D. S., Peterson T., Sharma N., Shojaeiarani J., Bajwa S. G.: A Review of Densified Solid Biomass for Energy Production. Renewable Sustainable Energy Reviews, 2018, Vol. 96, 296–305. DOI: 10.1016/J.RSER.2018.07.040.
  • [11] Li W., Wang M., Meng F., Zhang Y.: Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets. Energies, 2022, Vol. 15, 7303. DOI: https://doi.org/10.3390/en15197303.
  • [12] Relova I., Vignote S., León M. A., Ambrosio Y.: Optimisation of the manufacturing variables of sawdust pellets from the bark of Pinus caribaea Morelet: Particle size, moisture and pressure. Biomass and Bioenergy, 2009, Vol. 33, 1351-1357.
  • [13] Kulig R., Skonecki S., Łysiak G., Guz T., Rydzak L., Kobus Z.: Pressure compaction of sugar beet pulp - process parameters and quality of the agglomerate. Teka Komisji Motoryzacji i Energetyki Rolnictwa, 2014, Vol. 14(3), 55- 60.
  • [14] Skonecki S., Kulig R., Łysiak G., Różyło R., Wójcik M.: Wpływ wilgotności materiału i nacisku tłoka na parametry zagęszczania i wytrzymałość aglomeratu ślazowca pensylwańskiego (Sida hermaphrodita). Acta Agrophys., 2017, Vol. 24(2), 329-339.
  • [15] Styks J., Wróbel M., Frączek J., Knapczyk A.: Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets. Energies, 2020, Vol. 13, 1859. DOI: https://doi.org/10.3390/en13081859.
  • [16] Styks J., Knapczyk A., Łapczyńska-Kordon B.: Effect of compaction pressure and moisture content on post-agglomeration elastic springback of pellets. Materials, 2021, Vol. 14(4), 1-19. DOI: https://doi.org/10.3390/ma14040879.
  • [17] Kulig R., Łysiak G., Skonecki S.: Prediction of pelleting outcomes based on moisture versus strain hysteresis during the loading of individual pea seeds. Biosystems Engineering, 2015, Vol. 129, 226-236. DOI: https://doi.org/10.1016/j.biosystemseng.2014.10.013.
  • [18] Frodeson, S., Henriksson G., Berghel J.: Effects of Moisture Content during Densification of Biomass Pellets, Focusing on Polysaccharide Substances. Biomass Bioenergy, 2019, Vol. 122, 322-330. DOI: https://doi.org/10.1016/j.biombioe.2019.01.048.
  • [19] Demirel, C., Gürdil G. A. K., Kabutey A., Herak D.: Effects of Forces, Particle Sizes, and Moisture Contents on Mechanical Behaviour of Densified Briquettes from Ground Sunflower Stalks and Hazelnut Husks. Energies, 2020, Vol. 13, 2542. DOI: https://doi.org/10.3390/en13102542.
  • [20] Łysiak G., Kulig R., Al Aridhee J. K.: Toward new value-added products made from anaerobic digestate: part 1— study on the effect of moisture content on the densification of solid digestate. Sustainability, 2023, Vol. 15(1), 4548. DOI: https://doi.org/10.3390/su15054548.
  • [21] Ahmed, I., Ali A., Ali B., Hassan M., Hussain S., Hashmi H., Ali Z., Soomro A., Mukwana K.: Production of Pellets from Furfural Residue and Sawdust Biomass: Effect of Moisture Content, Particle Size and a Binder on Pellet Quality and Energy Consumption. Bioenergy Res., 2022, Vol. 15, 1292-1303. DOI: https://doi.org/10.1007/s12155-021-10335-8.
  • [22] Sahoo S., Seydibeyo M. O., Mohanty A. K., Misra M.: Characterization of industrial lignins for their utilization in future value added applications. Biomass and Bioenergy, 2011, Vol. 135, 4230-4237.
  • [23] Łysiak G., Kulig R., Kowalczyk-Juśko A.: Toward new value-added products made from anaerobic digestate: part 2-effect of loading level on the densification of solid digestate. Sustainability, 2023, Vol. 15(9), 7396. DOI: https://doi.org/10.3390/su15097396.
  • [24] Ruiz G., Ortiz M., Pandolfi A.: Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. International Journal for Numerical Methods in Engineering, 2000, Vol. 48, 963-994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3608320a-0f28-4eb6-92bc-d24a3ae673e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.