Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of model research concerning the change of technology of argon blowing into liquid steel at the ladle furnace, using the dual plug system. The results of numerical simulations were verified with experimental data carried out on the water model device. The verified model was used to perform numerical simulations to predict the impact of using a new gas injection technology - with different flow rates - on the time to achieve the assumed degree of metal chemical homogenization after alloy addition. Simulation results show that argon blowing metal bath in dual plug mode can effectively reduce mixing time compared to conventional technology with the same gas flow rates. Generally, the use of the dual plug system is beneficial for reducing the bath mixing time, however, the assumed optimal proportion of gas blown through individual plug should be followed. Finally, numerical predictions were used to perform experimental melt under industrial conditions. Industrial verification has clearly confirmed the validity of numerical modeling and showed that also in industrial conditions, a shorter time of chemical homogenization was obtained for the dual plug system.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
561--572
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
- CMC Poland Sp. z o.o., 82 Piłsudskiego Str., 42-400 Zawiercie, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasinskiego Str., 40-019 Katowice, Poland
Bibliografia
- [1] P. Cavaliere, Ironmaking and Steelmaking Processes, Springer-Verlag, Germany (2016).
- [2] A. K. Chakrabarti: Steel Making, PHI Learning, New Delhi, India (2012).
- [3] J. Szekely, G. Carlsson, L. Helle, Ladle Metallurgy, Springer-Verlag, Germany (1989).
- [4] E. T. Turkdogan, Fundamentals of steelmaking, The Institute of Materials, London (1996).
- [5] M. Soder, P. Jonsson, L. Jonsson, Steel Res. Int. 75 (2), 128-138 (2004).
- [6] M. Warzecha, J. Jowsa, P. Warzecha, H. Pfeifer, Steel Res. Int. 79 (11), 852-860 (2008).
- [7] C. E. Grip, L. Jonsson, Physical behavior of slag in a 107 tone ladle. Production scale experiments and theoretical simulation, SSAB Tunnplant Lulea, MEFOS Lulea, Sweden (2000).
- [8] A. S. Gómez, A. N. Conejo, R. Zenit, Journal of Applied Fluid Mechanics 11 (1), 11-20 (2018).
- [9] M. Warzecha, J. Jowsa, T. Merder, Metalurgija 46 (4), 227-232 (2007).
- [10] Y. Liu, M. Ersson, H. Liu, P. G. Jonsson, Y. Gan, Metall. Trans. B 50, 555-577 (2019).
- [11] L. Müller, Zastosowanie analizy wymiarowej w badaniach modeli [Application of dimensional analysis in model research], PWN, Warszawa, Poland (1983).
- [12] E. K. Ramasetti, V.-V. Visuri, P. Sulasalmi, T. Fabritius, A CFD and experimental investigation of slag eye in gas stirred ladle, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Paper No. 148, 2018.
- [13] T. Merder, J. Pieprzyca, M. Warzecha, Modelling research of high gas flow rate blowing of the liquid steel in the ladle unit, 25th Anniversary International Conference on Metallurgy and Materials 210-215 (2016).
- [14] Z. Liu, L. Li, B. Li, ISIJ Int. 57 (11), 1971-1979 (2017).
- [15] D. Mazumdar, J.W. Evans, Metall. Trans. B35 (2), 400-404 (2004).
- [16] J. Pieprzyca, T. Merder, M. Saternus, Metalurgija 53 (3), 327-330 (2014).
- [17] Y. Pan, B. Bjorkman, ISIJ Int. 42 (1), 53-62 (2002).
- [18] M. Iguchi, T. Nakatani, H. Kawabata, Metall. Trans. B 28 (3), 409-416 (1997).
- [19] M. Iguchi, T. Nakatani, H. Tokunaga, Metall. Trans. B 28 (3), 417-423 (1997).
- [20] K. Michalek, M. Tkadlečková, K. Gryc, P. Klus, Z. Hudzieczek, V. Sikora, P. Střasák, Optimization of argon blowing conditions for the steel homogenization in ladle by numerical modeling, in: 20th Anniversary International Conference on Metallurgy and Materials: METAL 2011, p. 143-149 (2011).
- [21] Z. Hudzieczek, K. Michalek, K. Gryc, P. Klus, M. Tkadlečková, Criterion analysis of the physical modelling of the transition and homogenization processes in the ladle and interpretation of results, in: 20th Anniversary International Conference on Metallurgy and Materials: METAL 2011, p. 112-117 (2011).
- [22] J. Szekely, H. Dilawari, R. Metz, Metall. Trans. B 10 (1), 33-28 (1979).
- [23] L. Li. Z. Liu, B. Li, H. Matsuura, F. Tsukihashi, ISIJ Int. 55 (7), 1337-1346 (2015).
- [24] S. W. P. Cloete, J. J. Eksteen, S. M. Bradshaw, Minerals Engineering 46-47 (11), 16-24 (2013).
- [25] J. L. Xia, T. Ahokainen, L. Holappa, Scandinavian J. Metall. 30 (1), 69-76 (2001).
- [26] C. G. Mendez, N. Nigro, A. Cardona, J. Mater. Processing Technology 160 (3), 296-305 (2005).
- [27] D. Guo, G. A. Irons, Metall. Trans. B 33 (4), 377-383 (2002).
- [28] S. Torres, A. M. Baron, Open J. Applied Sciences 13 (6), 860-867 (2016).
- [29] H. Liu, Z. Qi, M. Xu, Steel Res. Int. 82 (4), 440-458 (2011).
- [30] M. Madan, D. Satish, D. Mazumdar, ISIJ Int. 45 (5), 677-685 (2005).
- [31] D. Guo, L. Gu, G. Irons, Applied Mathematical Modelling 26 (2), 263-285 (2002).
- [32] ANSYS Fluent ver. 16.0 - user’s guide, Canonsburg, USA (2015).
- [33] ANSYS Fluent ver. 16.0 - theory guide, Canonsburg, USA (2015).
- [34] C. E. Brennen: Fundamentals of Multiphase Flows, Cambridge University Press (2005).
- [35] C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase flows with droplets and particles, Second edition, CRC Press, Taylor & Francis Group, Boca Raton, USA (2011).
- [36] S. Kim, R. J. Fruehan, R. I. L. Guthrie, Steelmaking Process, ISSAIME, Pittsburgh, PA, 107-118 (1987).
- [37] P. Valentin, C. Bruch, Y. Kyrylenko, H. Köchner, C. Dannert, Steel Res. Int. 80 (8), 552-558 (2009).
- [38] L. Wu, P. Valentin, D. Sichen, Steel Res. Int. 81 (7), 508-515 (2010).
- [39] M. Ek, L. Wu, P. Valentin, D. Sichen, Steel Res. Int. 81 (12), 1056-1063 (2010).
- [40] H. Duan, L. Zhang, B. G. Thomas, A. N. Conejo, , Metall. Trans. 49 B, 2722-2743 (2018).
- [41] A. Jablonka, Steel Res. Int. 62 (1), 24-33 (1991).
- [42] J. Pieprzyca, T. Merder, M. Saternus, K. Michalek, Arch. Metall. Mater. 60 (3), 1859-1863 (2015).
- [43] H. Chanson, The hydraulics of open channel flow, Arnold, Euston Road, London, UK (1999).
- [44] T. Merder, J. Pieprzyca, M. Warzecha, P. Warzecha, Arch. Metall. Mater. 62 (2A), 905-910 (2017).
- [45] J. Pieprzyca, T. Merder, J. Jowsa, Arch. Metall. Mater. 60 (1), 245-249 (2015).
Uwagi
1. This paper was created with the support financed jointly by the EU and the National Centre for Research and Development conducted within the framework of the Operational Programme „Smart Growth 2014-2020”, project No PoIr.01.02.00-00-0159/16.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36079c92-b53d-4f2f-882a-9dd0ec445ce8