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Abstract. Let X and Y be two independent random variables, either discrete or
continuous. The question is "what is the probability distribution of Z = X + Y"?
Clearly, the probability distribution of Z = X + Y is some combination of fx and
fy which is called the convolution of fx and fy. It is denoted by x. We have
fz(t) = fx4v(t) = fx(t)*fy (¢). In this paper it is shown how we can use geometrical
probability spaces to find (without convolution) the distribution of random variable
Z=X+Y.

1. Introduction

A random variable is one of important notions of the probability calculus.
Of particular importance are continuous random variables because they have
applications in mathematical statistics, economics, theory of insurance, and
physics. Mathematical tools used for examining these random variables are
rather complicated (the characteristic function, the Riemann-Stieltjes inte-
gral, the notion of the functional convolution). In the works [2], [3] and [4] it
is presented how it is possible to use geometrical probability space for examin-
ing continuous random variables. In this work we suggest a method of finding
the cumulative distribution function and the density function of the sum of
independent continuous random variables, with the use of the geometrical
probability space.

2. Basic definitions

To begin with, we recall definitions and theorems which are essential for sub-
sequent part of this work.
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Definition 1. Let (2, Z, P) be any probability space. A random variable in
this probability space is defined as any function X from the set Q0 in R that
satisfies the condition:

{weQ: X(w) <z} e Z forany x € R. (1)

Theorem 1. If X is a random variable in the probability space (2, Z, P) and
B is the set of Borel subsets of a straight line and Px is a function defined by
formula:

Px(A) =P{{w e Q: X(w) € A}) for any A € B, (2)
then the triple (R, B, Px) is also the probability space.

Definition 2. Let X be a random variable in the probability space (2, Z, P).
The function Px defined by formula (2) on the set of Borel subsets of a straight
line is called the probability generated on a straight line by the random variable
X or the distribution of the random wvariable X, and the triple (R, B, Px)
is called the probability space generated on the straight line by the random
variable X .

Definition 3. A function Fx defined on R by the formula
Fx(z) = Px((—o0,x)) for any xz € R

is called the cumulative distribution function (also the cumulative density func-
tion) or briefly the distribution function of a random variable X.

Definition 4. A random variable X, for which there exists such a nonnegative
and integrable function fx defined on R that

Fe(o)= [ fxto,

is called continuous, and its distribution Px is called a continuous distribution.
The function fx is called the density of a random variable X or the density
of a distribution Px.

Definition 5. Random wvariables X1, Xo,... , X, from the same probability
space (2, Z,P) are called independent if for any Borel sets By, Ba,...
By, on a straight line, the events Ay, Aa, ... , Ay, where A; = {w € Q: X;(w) €
B;} for j =1,2,... ,n, satisfy the following condition:
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Definition 6. Let € be a subset of k-dimensional FEuclidean space
(k = 1,2,3,...) having the positive k-dimensional Lebesque measure, let Z
be a set of subsets of the Q) set having the Lebesque measure and let P be
a function defined on Z by the formula:

P(A) = ——=, where m; denotes the Lebesque measure. (3)

The triple (2, Z, P) is called the geometric probability space, and P is called
the geometric probability.

3. The sum of two independent uniform random
variables — the classical method

Let X and Y be independent random variables with uniform distributions and

let
1if0<t<1,

0 otherwise,

1if 1 <t <2,
0 otherwise.

et = { o ={

Let Z=X+Y.

The graphs below illustrate the method of determining the density function
of the random variable Z.
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1° <1
fx(t—v) fr (v)
— 1 —
T o1 2 v

P (t=0)-fy () =0= fxsfy ()= | Jy(0)fx (t=v)dv=0

2° 1<t<?2
fx(t—v) fy () fx (t—v) fy (v)
0 1t 2 © 0 1 i v
Ixsty® =T fy (@) fx (t—v)do=(t—1)1=t-1
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5° >3

fr(v)  fx(t-v)

Ix (t=v)-fy (v)=0 = fx*fy(t) =jo fy (0) fx (t=v)dv =0

We have:
0 fort<1vVvt>3,

fz(t) =L t—1 for1 <t <2,
—t+3 for2<t<3.

4. The sum of two independent uniform random
variables — the alternative method

Let us consider independent continous random variables X and Y with the
density functions fx and fy. Let

QY= {(z,y,2) eR*: 0< 2 < fx(2)fy(y)}

and let Z be a family of subset of the set QXY having the Lebesque measure.
Let us notice that m;(Q2) = 1. The triple (2, Z, P), where P(A) = m(A),
is a geometrical probability space. The probability space (2, Z, P) will be
called the basic geometrical probability space of independent random variables
X andY.

Let X and Y be independent random variables with uniform distributions

and
lif0<t<1,

0 otherwise,

1if 1 <t <2,
0 otherwise.

fx(t) = {

Tet Z=X+Y,

Jy(t) = {

QY ={(z,9,2)eR3*: 0<x <1, 1<y<2 0<2z<1}=(0,1)x(1,2)x[0,1],

and X: Q — R be given by the formula X (x,y,2) = z, whereas Y: Q@ — R
be given by the formula Y (z,y,z) = y. Let us define

Ax(t) ={(z,y,2) € ¥V X(w) <t} ={(z,y,2) e ¥V : 2 < t}

for t € R.
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The graphs below illustrate the method of determining the distribution
function of the random variable X.

oy ={(,y.2) eR*: y =t}

t 1 9
1 7
t 1 27 Ly
T y =
! t<1 Ay(t) =0 Fy (t) = mp(Ay () = mp(0) = 0
x = ’
b () = Fu(t) =0
2z o ={(z,y,2) eR3: y = 1}
1l . )
Y
Ay (t
Ay(t)——» Y()
1 t 29 1y
T t—1 y:t
x ’
e frt)=Fy(t)=(t-1)=1
ag{ ={(=z,y,2) c R3: y=1t}
' 2t
]
ty A
x Y=t
' Fe(t) = ma (Ay () = mp. (@) = 1

. t>2, Ay(t) =9 fyr(t)=Fy(t)=0

The cumulative distribution function of a random variable X is expressed
by the formula:
0if z <0,
Fx(t)=< tif0<t<1,
1ift > 1.
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Hence it follows that the density function of a random variable X is given
by the formula:
lit0<t <1,
x®) _{ 0ift<OVt> 1.

Reasoning in a similar way, one may state that Y is a continuous random

variable for which
1if 1 <t <2,

fY(t):{ 0ift <1ViE>2.
It may be easily shown that random variables X and Y are independent

random variables.
Let us now consider a random variable 7 = X +Y. We have:

Z(x,y,z) =x+y for (z,y,2) € (0,1) x (1,2) x [0, 1].

Now we determine the cumulative distribution function of the random variable
Z. Let
Az(t) = {(2.y,2) € (0,1) x (1,2) x [0,1]: 2+ < 1}

for t € R.
The graphs below illustrate the method of determining the distribution
function of the random variable Z.
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' Yy
Az(t) =0
¢ 1 27 17
x
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z atZ:{(x,y,Z)ER?’:x—i-y:t}
1 ) ) .
Az (t) A y
Az(t)
1 5 11
z y=—az+t /143
z/1 FZ(t):mL(Az(t)):(17ﬁ),1:%t2+3t7%
2<t<3 } T 2
fz(t) = Fy(t) = (5 +3t—3) = —t +3
z atZ:{(xvyvz)ERBCx—Fy:t}
1t 1 5
Az(t)=9Q 7
Az (t)=Q
14,
T y=—z+t
v Fy(t) = mi(Az(t) = my (@) = 1
fz(t) =F () =1 =0
We have:
0 for t <1,
t2 1
S—t4+s5 forl<t<2,
Fz(x)= 2t2 T3 . r <
L 43t—1 for2<t<3,
1 for t > 3,
0 fort <1Vt>3,
fz8)=S t—1 forl<t<2,
—t+3 for2<t<3.
Fz(t) fz(t)
! / 1
2 3 ¢ ¥ 3 -
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5. Conclusion

It is worthwhile to solve the problems presented above with the students at
mathematics teachers training majors. Proving the theorems with elemen-
tary methods with the use of mathematical analysis and geometrical methods
allows us to consider the elements of probability calculus in a different (than
traditional) way. Quite elementary tools make the presented problems simple
to understand and to operative use.
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