
Jan Dªugosz University in Cz�stohowa

Sienti� Issues, Mathematis XVI, Cz�stohowa 2011

CONVOLUTE AND GEOMETRICAL
PROBABILITY SPACES

Maiej Major

Institute of Mathematis, Pedagogial University of Craow

Podhor¡»yh 2, 30-084 Craow, Poland

e-mail: mmajor�up.krakow.pl

Abstrat. Let X and Y be two independent random variables, either disrete or

ontinuous. The question is "what is the probability distribution of Z = X + Y "?

Clearly, the probability distribution of Z = X + Y is some ombination of fX and

fY whih is alled the onvolution of fX and fY . It is denoted by ∗. We have

fZ(t) = fX+Y (t) = fX(t)∗fY (t). In this paper it is shown how we an use geometrial

probability spaes to �nd (without onvolution) the distribution of random variable

Z = X + Y .

1. Introdution

A random variable is one of important notions of the probability alulus.

Of partiular importane are ontinuous random variables beause they have

appliations in mathematial statistis, eonomis, theory of insurane, and

physis. Mathematial tools used for examining these random variables are

rather ompliated (the harateristi funtion, the Riemann�Stieltjes inte-

gral, the notion of the funtional onvolution). In the works [2℄, [3℄ and [4℄ it

is presented how it is possible to use geometrial probability spae for examin-

ing ontinuous random variables. In this work we suggest a method of �nding

the umulative distribution funtion and the density funtion of the sum of

independent ontinuous random variables, with the use of the geometrial

probability spae.

2. Basi de�nitions

To begin with, we reall de�nitions and theorems whih are essential for sub-

sequent part of this work.
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De�nition 1. Let (Ω,Z, P ) be any probability spae. A random variable in

this probability spae is de�ned as any funtion X from the set Ω in R that

satis�es the ondition:

{ω ∈ Ω : X(ω) < x} ∈ Z for any x ∈ R. (1)

Theorem 1. If X is a random variable in the probability spae (Ω,Z, P ) and

B is the set of Borel subsets of a straight line and PX is a funtion de�ned by

formula:

PX(A) = P ({ω ∈ Ω : X(ω) ∈ A}) for any A ∈ B, (2)

then the triple (R,B, PX) is also the probability spae.

De�nition 2. Let X be a random variable in the probability spae (Ω,Z, P ).
The funtion PX de�ned by formula (2) on the set of Borel subsets of a straight

line is alled the probability generated on a straight line by the random variable

X or the distribution of the random variable X, and the triple (R,B, PX)
is alled the probability spae generated on the straight line by the random

variable X.

De�nition 3. A funtion FX de�ned on R by the formula

FX(x) = PX((−∞, x)) for any x ∈ R

is alled the umulative distribution funtion (also the umulative density fun-

tion) or brie�y the distribution funtion of a random variable X.

De�nition 4. A random variable X, for whih there exists suh a nonnegative

and integrable funtion fX de�ned on R that

FX(x) =

∫ x

−∞

fX(t)dt,

is alled ontinuous, and its distribution PX is alled a ontinuous distribution.

The funtion fX is alled the density of a random variable X or the density

of a distribution PX .

De�nition 5. Random variables X1,X2, . . . ,Xn from the same probability

spae (Ω,Z, P ) are alled independent if for any Borel sets B1, B2, . . . ,

Bn on a straight line, the events A1, A2, . . . , An, where Aj = {ω ∈ Ω: Xj(ω) ∈
Bj} for j = 1, 2, . . . , n, satisfy the following ondition:

P (A1 ∩ A2 ∩ . . . ∩ An) = P (A1) · P (A2) · . . . · P (An).



Convolute and geometrial probability spaes 257

De�nition 6. Let Ω be a subset of k-dimensional Eulidean spae

(k = 1, 2, 3, . . . ) having the positive k-dimensional Lebesgue measure, let Z
be a set of subsets of the Ω set having the Lebesgue measure and let P be

a funtion de�ned on Z by the formula:

P (A) =
ml(A)

ml(Ω)
, where ml denotes the Lebesgue measure. (3)

The triple (Ω,Z, P ) is alled the geometri probability spae, and P is alled

the geometri probability.

3. The sum of two independent uniform random
variables � the lassial method

Let X and Y be independent random variables with uniform distributions and

let

fX(t) =

{
1 if 0 < t < 1,
0 otherwise,

fY (t) =

{
1 if 1 < t < 2,
0 otherwise.

Let Z = X + Y .

The graphs below illustrate the method of determining the density funtion

of the random variable Z.
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1◦ t≤1

fX(t−v)·fY (v) = 0⇒ fX∗fy(t) =
∞∫

−∞

fY (v)fX (t−v)dv = 0
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5◦ t≥3

fX(t−v)·fY (v)=0 ⇒fX∗fY (t) =
∞∫

−∞

fY (v)fX (t−v)dv = 0

v

fX(t−v)

0 t

1
fY (v)

1 2

We have:

fZ(t) =







0 for t ≤ 1 ∨ t ≥ 3,

t − 1 for 1 < t < 2,

−t + 3 for 2 < t < 3.

4. The sum of two independent uniform random
variables � the alternative method

Let us onsider independent ontinous random variables X and Y with the

density funtions fX and fY . Let

ΩXY := {(x, y, z) ∈ R
3 : 0 ≤ z ≤ fX(x)fY (y)}

and let Z be a family of subset of the set ΩXY having the Lebesque measure.

Let us notie that ml(Ω) = 1. The triple (Ω,Z, P ), where P (A) = ml(A),
is a geometrial probability spae. The probability spae (Ω,Z, P ) will be

alled the basi geometrial probability spae of independent random variables

X and Y .

Let X and Y be independent random variables with uniform distributions

and

fX(t) =

{
1 if 0 < t < 1,
0 otherwise,

fY (t) =

{
1 if 1 < t < 2,
0 otherwise.

Let Z = X + Y ,

ΩXY ={(x, y, z)∈ R
3 : 0 < x < 1, 1 < y < 2, 0 ≤ z ≤ 1} = (0, 1)×(1, 2)×[0, 1],

and X : Ω → R be given by the formula X(x, y, z) = x, whereas Y : Ω → R

be given by the formula Y (x, y, z) = y. Let us de�ne

AX(t) = {(x, y, z) ∈ ΩXY : X(ω) < t} = {(x, y, z) ∈ ΩXY : x < t}

for t ∈ R.
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The graphs below illustrate the method of determining the distribution

funtion of the random variable X.
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The umulative distribution funtion of a random variable X is expressed

by the formula:

FX(t) =







0 if x ≤ 0,
t if 0 < t < 1,
1 if t ≥ 1.
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Hene it follows that the density funtion of a random variable X is given

by the formula:

fX(t) =

{
1 if 0 < t < 1,
0 if t ≤ 0 ∨ t ≥ 1.

Reasoning in a similar way, one may state that Y is a ontinuous random

variable for whih

fY (t) =

{
1 if 1 < t < 2,
0 if t ≤ 1 ∨ t ≥ 2.

It may be easily shown that random variables X and Y are independent

random variables.

Let us now onsider a random variable Z = X + Y . We have:

Z(x, y, z) = x + y for (x, y, z) ∈ (0, 1) × (1, 2) × [0, 1].

Now we determine the umulative distribution funtion of the random variable

Z. Let

AZ(t) = {(x, y, z) ∈ (0, 1) × (1, 2) × [0, 1] : x + y < t}

for t ∈ R.

The graphs below illustrate the method of determining the distribution

funtion of the random variable Z.
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5. Conlusion

It is worthwhile to solve the problems presented above with the students at

mathematis teahers training majors. Proving the theorems with elemen-

tary methods with the use of mathematial analysis and geometrial methods

allows us to onsider the elements of probability alulus in a di�erent (than

traditional) way. Quite elementary tools make the presented problems simple

to understand and to operative use.
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