PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on operation fault diagnosis algorithm of power grid equipment based on power big data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Power big data contains a lot of information related to equipment fault. The analysis and processing of power big data can realize fault diagnosis. This study mainly analyzed the application of association rules in power big data processing. Firstly, the association rules and the Apriori algorithm were introduced. Then, aiming at the shortage of the Apriori algorithm, an IM-Apriori algorithm was designed, and a simulation experiment was carried out. The results showed that the IM-Apriori algorithm had a significant advantage over the Apriori algorithm in the running time. When the number of transactions was 100 000, the running of the IM-Apriori algorithm was 38.42% faster than that of the Apriori algorithm. The IM-Apriori algorithm was little affected by the value of supportmin. Compared with the Extreme Learning Machine (ELM), the IM-Apriori algorithm had better accuracy. The experimental results show the effectiveness of the IM-Apriori algorithm in fault diagnosis, and it can be further promoted and applied in power grid equipment.
Rocznik
Strony
793--800
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
  • Equipment Monitoring Department, State Grid Zhejiang Electric Power Company China
autor
  • Equipment Monitoring Department, State Grid Zhejiang Electric Power Company China
autor
  • Equipment Monitoring Department, State Grid Zhejiang Electric Power Company China
  • Wenzhou Power Supply Company, State Grid Zhejiang Electric Power Company China
Bibliografia
  • [1] Xu Y., Sun Y., Wan J., Liu X., Song Z., Industrial Big Data for Fault Diagnosis: Taxonomy, Review, and Applications, IEEE Access, vol. 5, pp. 17368–17380 (2017).
  • [2] Wang H., Fault diagnosis of analog circuit based on wavelet transform and neural network, Archives of Electrical Engineering, vol. 69, no. 1, pp. 175–185 (2020).
  • [3] Aggarwal A., Malik H., Sharma R., Feature extraction using EMD and classification through Probabilistic Neural Network for fault diagnosis of transmission line, IEEE International Conference on Power Electronics (2017).
  • [4] Lazim F.B., Hamzah N., Arsad P.M., Application of ANN to power system fault analysis, Conference on Research and Development (2016).
  • [5] Kari T., Gao W., Zhao D., Zhang Z., An integrated method of ANFIS and Dempster-Shafer theory for fault diagnosis of power transformer, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 1, pp. 360–371 (2018).
  • [6] Sahri Z., Yusof R., Fault diagnosis of power transformer using optimally selected DGA features and SVM, Asian Control Conference, IEEE (2015).
  • [7] Ab Ghani S.S., Muhamad N.A., Review on Dissolved Fault Gases in Monitoring Bio-Oil Filled Transformer, Applied Mechanics and Materials, vol. 818, pp. 69–73 (2016).
  • [8] Shanker T., Narasimhaiah H.N., Punekar G., Acoustic emission partial discharge detection technique applied to fault diagnosis: Case studies of generator transformers, Serbian Journal of Electrical Engineering, vol. 13, pp. 4–4 (2016).
  • [9] Altuntas S., Dereli T., Kusiak A., Analysis of patent documents with weighted association rules, Technological Forecasting and Social Change, vol. 92, pp. 249–262 (2015).
  • [10] Niu Z., Nie Y., Zhou Q., Zhu L., Wei J., A brain-region-based meta-analysis method utilizing the Apriori algorithm, BMC Neuroscience, vol. 17, no. 1, p. 23 (2016).
  • [11] Scardapane S., Comminiello D., Scarpiniti M., Uncini A., Online Sequential Extreme Learning Machine With Kernels, IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 9, pp. 2212–2220 (2015).
  • [12] Arkovi M., Stojkovi Z., Analysis of artificial intelligence expert systems for power transformer condition monitoring and diagnostics, Electric Power Systems Research, vol. 149, pp. 125–136 (2017).
  • [13] Ma Y., Yu X., Niu Y., A parallel heuristic reduction based approach for distribution network fault diagnosis, International Journal of Electrical Power and Energy Systems, vol. 73, pp. 548–559 (2015).
  • [14] Hasan H., Munawar M.R., Siregar R.H., Neural network-based solar irradiance forecast for peak load management of grid-connected microgrid with photovoltaic distributed generation, International Conference on Electrical Engineering and Informatics, IEEE (2017).
  • [15] Zhu Y., Yan J., Tang Y., Sun Y.L., He H.B., Joint Substation-Transmission Line Vulnerability Assessment Against the Smart Grid, IEEE transactions on Information Forensics and Security, vol. 10, no. 5, pp. 1010–1024 (2017).
  • [16] Li H., Zhang Z., Wang X., Zhou M., Li S., Electricity Consumption Behaviour Analysis Based on Time Sequence Clustering, Journal of Physics Conference Series, vol. 1168, p. 032011 (2019).
  • [17] Li Y.C., Yang R.Y., Zhao X.Y., Reactive power convex optimization of active distribution network based on Improved Grey Wolf Optimizer, Archives of Electrical Engineering, vol. 69, no. 1, pp. 117–131 (2020).
  • [18] Zhang Y.X., Cheng Z.F., Xu Z.P., Bai J., Application of Optimized Parameters SVM Based on Photoacoustic Spectroscopy Method in Fault Diagnosis of Power Transformer, Spectroscopy and Spectral Analysis, vol. 35, no. 1, p. 10 (2015).
  • [19] Wang L., Shang L.L., Ma M.C., Ma Z.G., Fault Diagnosis and Trace Method of Power System Based on Big Data Platform, Iop Conference, vol. 394, no. 4, p. 042116 (2018).
  • [20] Li L., Zhang X., Wang Z., Fault Diagnosis in Solar Photovoltaic Grid-Connected Power System Based on Fault Tree and BAM Neural Network, Transactions of China Electrotechnical Society, vol. 30, no. 2, pp. 248–254 (2015).
  • [21] Lakehal A., Ghemari Z., Saad S., Transformer fault diagnosis using dissolved gas analysis technology and Bayesian networks, International Conference on Systems and Control (2015).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36002be9-2d66-497c-b84d-c8da4e731157
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.