PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Isocoversional kinetic analysis of combustion and pyrolysis of municipal sewage sludge

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the thermal behaviours of sewage sludge were carried out by thermal analysis under air and argon atmospheres in the range from ambient temperature to 800 °C. The studied materials were characterized in terms of their chemical composition (C, N, H, S and trace elements) and calorific value. The important results focus on the temperature of maximum weight loss rate and the effect of atmosphere (air, argon) and heating rate (5, 10, 20 and 40 °C). TG and DTG curves were analysed. Non-isothermal kinetic analysis was used to evaluate the Arrhenius activation energy and the pre-exponential factor. The kinetic parameters were calculated using three isoconversional methods: Friedman, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa. The isoconversional methods were used to find dependency of the activation energy of studied processes on the conversion degree. The average values of activation energy for sewage sludge combustion e.g. S_A are Ea = 146.72; 151.87; 148.88 kJ/mol calculated by Friedman, FWO and KAS methods, respectively. For all studied sewage sludge samples the slight differences between the values of activation energies obtained by Friedman, FWO and KAS methods were obtained.
Rocznik
Strony
169--184
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Manara P, Zabaniotou A. Towards sewage sludge based biofuels via thermochemical conversion – A review. Renewable Sustainable Energy Rev 2012;16:2566-2582.
  • [2] Werther J, Ogada T. Sewage sludge combustion. Prog. Energy Combust Sci 1999;25:55-116.
  • [3] Vamvuka D, Kakaras E, Kastanaki E, Grammeli P. Pyrolysis characteristic and kinetics of biomass residuals mixtures with lignite. Fuel 2003;82:1949-1960.
  • [4] Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterization of products from pyrolysis of waste sludges. Fuel, 2006;85:1498-1508.
  • [5] Soria-Verdugo A, Garcia-Hernando N, Garcia-Gutierrez LM, Ruiz-Rivas U. Analysis of biomass and sewage sludge devolatilization using the distributed activation energy mode. Energy Convers Manage 2013;65:239-244.
  • [6] Garcia G, Aruazo J, Gonzalo A, Sanchez JL, Abrego J. Influence of feedstock composition in fluidized bed co-gasification of mixtures of lignite, bituminous coal and sewage sludge. Chem Eng J. 2013;222:345-352.
  • [7] Ji A., Zhang S, Lu X, Liu Y. A new method for evaluating the sewage sludge pyrolysis kinetics. Waste Manage 2010;30:1225-1229.
  • [8] Folgueras MB, Diaz RM, Xiberta J. Pyrolysis of blends of different types of sewage sludge with one bituminous coal. Energy 2005;30:1079-1091.
  • [9] Folgueras MB, Diaz RM, Xiberta J, Prieto I. Volatilisation of trace elements for coal-sewage sludge blends during their combustion. Fuel 2003;82:1939-1948.
  • [10] Amand LE, Leckner B. Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed. Fuel 2004;83:1803-1821.
  • [11] Elled AL, Amand LE, Leckner B, Andersson BA. The fate of trace elements in fluidised bed combustion of sewage sludge and wood. Fuel 2007;86:843-852.
  • [12] Smith SS. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 2009;35:142-156.
  • [13] Wang C, Hu X, Chen ML, Wu YH. Total concentration and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants. J Hazard Mater 2005;B119:245-249.
  • [14] Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim 2013;114:519-529.
  • [15] Viana MM, Melchert MBM, de Moriais LC, Buchler PM, Dweck J. Sewage sludge coke estimation using thermal analysis. J Therm Anal Calorim 2011;106:437-443.
  • [16] Otero M, Gomez X, Garcia AI, Moran A. Effects of sewage sludge blending on the coal combustion: A thermogravimetric assessment. Chemosphere, 2007;6:1740-1750.
  • [17] Wu H, Hanna MA, Jones DD. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Manage Res 2012;30:1066-1071.
  • [18] Sebastyen Z, Lezsovits F, Jakab E, Vahehyi G. Correlation between heating values and thermogravimetric data of sewage sludge. herbaceous crops and wood samples. J Therm Anal Calorim 2012;110:1501-1509.
  • [19] Casajus C, Abrego J, Marias F, Vaxelaire J, Sanchez JL, Gonzalo A. Product distribution and kinetic scheme for the fixe bed thermal decomposition of sewage sludge. Chem Eng J 2009;145:412-419.
  • [20] Barneto AG, Carmona JA, Alfonso JEM, Blanco JD. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J Anal Appl Pyrolysis, 2009;86:108-114.
  • [21] Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta 1992;203:159-165.
  • [22] Font R, Fullana A, Conesa J. Kinetic models for the pyrolysis and combustion of two types of sewage sludge. J Anal Appl Pyrolysis 2005;74:429-438.
  • [23] Sanchez ME, Otero M, Gomez X, Moran A. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energy, 2009;34:1622-1627.
  • [24] Conesa JA, Marcilla A, Prats D, Rodriguez-Pastor M. Kinetic study of the pyrolysis of sewage sludge. Waste Manage Res 1997;15:293-305.
  • [25] Hayhurst AN. The kinetics of pyrolysis or devolatilisation of sewage sludge and other solid fuels. Combust Flame, 2013;160:138-144.
  • [26] Scott SA, Dennis JS, Davidson JF, Hayhurst AN. Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge. Fuel, 2006;85:1248-1253.
  • [27] Ji S, Zhang S, Lu X, Liu Y. A new method for evaluating the sewage sludge pyrolysis kinetics. Waste Manage 2010;30:1225-1229.
  • [28] Grammelis P, Basinas P, Malliopoulou A, Sakellaropoulos G. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel 2009;88:195-205.
  • [29] Tas S, Yürüm Y. Co-firing of biomass with coals. Part 2. Thermogravimetric kinetic analysis of co-combustion of fir (Abies bornmulleriana) wood with Beypazari lignite. J Therm Anal Calorim 2012;107:293-298.
  • [30] Mothe CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods. J Therm Anal Calorim 2013;113:497-505.
  • [31] Magdziarz A, Werle S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manage 2014;34:174-179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35fbabc6-db46-4bd7-a487-b91b6aae7e73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.