Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, agriculture has to meet the growing food demand together with high requirements of environmental protection, especially regarding the climate change. The greenhouse gas emissions differ not only on a global, but also on a regional scale, and mitigation strategies are effective when they are adapted properly. Therefore, the aim of this paper is to present the results of methane (CH4) and nitrous oxide (N2O) emissions inventory on a regional level in Poland in years 1999-2015. The CH4 and N2O emissions were calculated according to the methodology used by the National Centre for Emissions Management (NCEM) for national inventory for United Nations Framework Convention on Climate Change and Kyoto Protocol. The data were taken from Central Statistical Office of Poland. The CH4 emissions in all studied years varied strongly between voivodeships and ranged from 5.6-7.5 Gg y-1 in the Lubuskie Voivodeship to 84.8-104.3 Gg y-1 in the Mazowieckie Voivodeship. While in most voivodeships the CH4 emissions dropped down, in Podlaskie, Warmińsko-Mazurskie, and Wielkopolskie voivodeships, the emissions of this gas increased significantly as a consequence of the development of dairy and meat production. In 1999, the highest N2O fluxes were calculated for the Wielkopolskie (5.7 Gg y-1), Mazowieckie (4.8 Gg y-1) Kujawsko-Pomorskie (3.5 Gg y-1) and Lubelskie (3.3 Gg y-1) voivodeships, while in 2015, the highest nitrous oxide emissions were calculated for the Wielkopolskie (7.3 Gg y-1), Mazowieckie (5.5 Gg y-1), Kujawsko-Pomorskie (4.1 Gg y-1) and Podlaskie (4.1 Gg y-1) voivodeships. In the studied period, the contribution of N2O emissions from crop production increased in almost all voivodeships except the Podlaskie, Lubuskie and Warmińsko-Mazurskie regions. The growth in emissions from mineral fertilization and crop residue incorporation, together with the increase of emission from the animal sector in some regions of Poland, resulted in the higher national emission of nitrous oxide in the period of 1999 to 2015. Although there is a range of GHG reduction possibilities, the mitigation should be adapted with caution, on the basis of precisely calculated GHG emissions. The best management practices, if followed carefully, may reduce the environmental burden of the agricultural production and enhance its profitability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
206--217
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
autor
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
autor
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
autor
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
- 1. Aemiro A., Watanabe S., Suzuki K., Hanada M., Umetsu K., Nishida T. 2016. Effects of Euglena (Euglena gracilis) supplemented to diet (forage: concentrate ratios of 60:40) on the basic ruminal fermentation and methane emissions in in vitro conditions. Animal Feed Science and Technology, 212, 129–135.
- 2. Bajzelj B., Richards K.S., Allwood J.M., Smith P., Dennis J.S., Curmi E., Gilligan C.A. 2014. Importance of food-demand management for climate mitigation. Nature Climate Change, 4, 924–929.
- 3. Bertora C., Alluvione F., Zavattaro L., van Groenigen J.W., Velthof G., Grignani C. 2008. Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation. Soil Biology & Biochemistry 40, 1999–2006.
- 4. Buratti C., Fantozzi F., Barbanera M., Lascaro E., Chiorri M., Cecchini L. 2017. Carbon footprint of conventional and organic beef production systems: An Italian case study. Science of the Total Environment, 576, 129–137.
- 5. Chadwick D., Sommer S., Thorman R., Fangueiro D., Cardenas L., Amon B., Misselbrook T. 2011. Manure management: Implications for greenhouse gas emissions. Animal Feed Science and Technology, 166–167, 514–531.
- 6. Chobtang J., Ledgard S.F., McLaren S.J., Donaghy D.J. 2017. Life cycle environmental impacts of high and low intensification pasture-based milk production systems: A case study of the Waikato region, New Zealand. Journal of Cleaner Production, 140, 664–674.
- 7. CSO 2016. Statistical yearbook of agriculture. Central Statistical Office, Warsaw.
- 8. Czubaszek R., Wysocka-Czubaszek A. 2018. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant. Interantional Agrophysics, 32, 29-37.
- 9. Dalgaard T., Olesen J.E., Petersen S.O., Petersen B.M., Jørgensen U., Kristensen T., Hutchings N.J., Gyldenkærne S., Hermansen J.E. 2011. Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO2 reductions? Environmental Pollution, 159, 3193–3203.
- 10. EPA 2012. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 - 2030 EPA 430-R- 12-006, Office of Atmospheric Programs Climate Change Division U.S. Environmental Protection Agency. Washington DC.
- 11. Eugène M., Archimède H., Sauvant D. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livestock Production Science, 85, 81–97.
- 12. Eurostat 2015. Agriculture - greenhouse gas emission statistics. Eurostat Statistics Explained. http:// ec.europa.eu/eurostat/statistics-explained/index. php/Agriculture_-_greenhouse_gas_ emission_ statistics#Agriculture.27s_contribution.
- 13. FAO 2016. Agriculture’s greenhouse gas emissions on the rise. http://www.fao.org/news/story/ en/item/216137/icode/.
- 14. Filipiak K., Ufnowska J. 2002. The regional diferentiation and utilization of agricultural production area in Poland [in Polish]. Pamiętnik Puławski, 130, 153–160.
- 15. Freibauer A. 2003. Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. European Journal of Agronomy, 19, 135–160.
- 16. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci, A., Tempio G. 2013. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
- 17. Gerssen-Gondelach S.J., Lauwerijssen R.B.G., Havlík P., Herrero M., Valin H., Faaij A.P.C., Wicke B. 2017. Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agriculture, Ecosystems and Environment, 240, 135–147.
- 18. Greathead H. 2003. Plants and plant extracts for improving animal productivity. Proceedings of the Nutrition Society, 62, 279–290.
- 19. Hou Y., Velthof G.I. and Oenema O. 2015. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment Glob. Chang. Biol., 21, 1293-1312.
- 20. IPCC 2006. IPCC 2006 Guidelines for National Greenhouse Gas Inventories. The Institute for Global Environmental Strategies (IGES) for the IPCC, http://www.ipcc-nggip.iges.or.jp/ public/2006gl/index.html.
- 21. IPCC 2014. Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Cambridge University Press.
- 22. Isermann K. 1994. Agriculture’s share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share. Environmental Pollution, 83, 95–111.
- 23. Kopiński J. 2009. Regionalne zróżnicowanie intensywności organizacji produkcji rolniczej w Polsce. Studia i Raporty IUNG-PIB, 15, 37-49
- 24. Kulikowski R. 2010. Farm Livestock [in:] Bański J. (ed.) Atlas of Polish agriculture. Stanisław Leszczycki Institute of Geography and Spatial Organization, Polish Academy of Science, Warsaw, 94–111.
- 25. Leip A., Busto M. and Winiwarter W. 2011. Developing spatially stratified N2O emission factors for Europe Environmental Pollution, 159, 3223-3232.
- 26. Mathison G.W,. Okine E.K., McAllister T.A., Dong Y., Galbraith J., Dmytruk O. I.N. 1998. Reducing Methane Emissions from Ruminant Animals. Journal of Applied Animal Research, 14(1), 1–28.
- 27. Mendel M., Chłopecka M., Dziekan N., Karlik W. 2017. Phytogenic feed additives as potential gut contractility modifiers – A review. Animal Feed Science and Technology, 230, 30–46.
- 28. NCEM 2016. Poland’s national inventory report 2016. Greenhouse gas inventory for 1988-2014. Institute of Environmental protection – National Research Institute, The National Centre for Emissions Management. Warsaw.
- 29. MODR 2007. Development of rural areas. Agriculture of małopolskie voivodship – 2013 [in Polish], Małopolski Ośrodek Doradztwa Rolniczego. http://www.modr.pl/sub.php?mb=4&t=670.
- 30. Moss A.R, Jouany J.-P., Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech., 49, 231–253.
- 31. Mulbry W., Ahn H. 2014. Greenhouse gas emissions during composting of dairy manure: Influence of the timing of pile mixing on total emissions. Biosystems Engineering, 126, 117–122.
- 32. Nayak D.R., Adhya T.K., Babu Y.J., Datta A., Ramakrishnan B., Rao V.R. 2006. Methane emission from a flooded field of Eastern India as influenced by planting date and age of rice (Oryza sativa L.) seedlings. Agriculture, Ecosystems and Environment, 115, 79–87.
- 33. Neufeldt H., Schäfer M., Angenendt E., Li C., Kaltschmitt M., Zeddies J. 2006. Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic-ecosystem model. Agriculture, Ecosystems and Environment, 112, 233–240.
- 34. Patra A.K., Saxena J. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews, 22, 204–219.
- 35. Paustian K., Lehmann J., Ogle S., Reay D., Robertson G.P., Smith P. 2016. Climate-smart soils. Nature, 532, 49–57.
- 36. Pellerin S., Bamière L., Angers D., Béline F., Benoit M., Butault J.-P., Chenu C., Colnenne-David C., De Cara S., Delame N., Doreau M., Dupraz P., Faverdin P., Garcia-Launay F., Hassouna M., Hénault C., Jeuffroy M.-H., Klumpp K., Metay A., Moran D., Recous S., Samson E., Savini I., Pardon L., Chemineau P. 2017. Identifying cost-competitive greenhouse gas mitigation potential of French agriculture. Environmental Science and Policy, 77, 130–139.
- 37. Pratt C., Deslippe J., Tate K.R. 2013. Testing a biofilter cover design to mitigate dairy effluent pond methane emissions. Environmental Science and Technology, 47(1), 526–532.
- 38. Rodhe L.K.K., Abubaker J., Ascue J., Pell M., Nordberg Å. 2012. Greenhouse gas emissions from pig slurry during storage and after field application in northern European conditions. Biosystems Engineering, 113, 379–394.
- 39. Smith A.P., Western A.W., Murray C. Hannah M.C. 2013. Linking water quality trends with land use intensification in dairy farming catchments. Journal of Hydrology, 476, 1–12.
- 40. Sommer S.G., Petersen S.O.,. Møller H.B. 2004. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems, 69, 143–154.
- 41. Stuczyński T., Budzyńska K., Gawrysiak L., Zaliwski A. 2000. Waloryzacja rolniczej przestrzeni produkcyjnej Polski. Biuletyn Informacyjny IUNG, 12, 4-17.
- 42. Turner A.J., Jacob D.J., Wech, K. J., Maasakkers J.D., Lundgren E., Andrews A.E., Biraud S.C., Boesch H., Bowman K.W., Deutscher N.M., Dubey M.K., Griffith D.W. T., Hase F., Kuze A., Notholt J., Ohyama H., Parker R., Payne V.H., Sussmann R., Sweeney C., Velazco V.A., Warneke T., Wennberg P.O. and Wunch D. 2015. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 15, 7049–7069.
- 43. Udo H.M.J., Aklilu H.A., Phong L.T.,. Bosma R.H, Budisatria I.G.S., Patil B.R., Samdup T., Bebe B.O. 2011. Impact of intensification of different types of livestock production in smallholder crop-livestock systems. Livestock Science, 139, 22–29.
- 44. UN 2017. World population prospects. 2017. Revision. Key Findings and advance tables. United Nations, Department of Economic and Social Affairs, Population Division, ESA/P/WP/248, New York.
- 45. UNFCCC 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change.
- 46. Verge X.P.C., De Kimpe C., Desjardins R.L. 2007. Agricultural production, greenhouse gas emissions and mitigation potential. Agricultural and Forest Meteorology, 142, 255–269.
- 47. Yusuf R.O, Noor Z.Z., Abba A.H., Hassan M.A.A., Din M.F.M. 2012. Methane emission by sectors: A comprehensive review of emission sources and mitigation methods. Renewable and Sustainable Energy Reviews, 16, 5059–5070.
- 48. Zhang N., Bai Z., Luo J., Ledgard S., Wu Z., Ma L. 2017. Nutrient losses and greenhouse gas emissions from dairy production in China: Lessons learned from historical changes and regional differences. Science of the Total Environment, 598, 1095–1105.
- 49. Zhou J.B., Jiang M.M. and Chen G.Q. 2007. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Policy, 35, 3759–3767.
- 50. Zucali M., Tamburini A., Sandrucci A., Bava L. 2017. Global warming and mitigation potential of milk and meat production in Lombardy (Italy). Journal of Cleaner Production, 153, 474–482.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35f7be30-2d7e-4e1b-9bb1-3fb4fc3f9e52