Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phytoremediation is an alternative technology for treating leachate by utilizing plants. The objective of this study was to examine the concentrations of total suspended solid (TSS), total nitrogen (TN), and cadmium (Cd) in leachate through the phytoremediation process using Chlorophytum comosum, Echinodorus palaefolius, and Hippochaetes lymenalis. The research was conducted on a laboratory scale with a batch system. The leachate was sourced from the Ngipik Landfill, Gresik, East Java, Indonesia, and was collected from the inlet of the Ngipik Landfill Leachate Treatment Unit. Acclimatization was carried out for 7 days. A range finding test (RFT) was conducted by varying the concentration composition of the leachate compared to tap water, with the planting medium being 25% leachate: 75% tap water, 50% leachate: 50% tap water, 50% leachate: 75% tap water, and 100% leachate: 0% tap water (v/v). The plants used in each reactor weighed 1 kg. The reactors used for the phytoremediation process were plastic boxes with dimensions of 51×32×31 cm. The planting medium consisted of gravel-sized 10–20 mm, with a thickness of 7 cm, and soil with a thickness of 7 cm. This research showed that the average final TSS concentration of the leachate was 25.50 ± 44.37 mg/L. The average TSS reduction efficiency reached 94.90 ±8.87%. The average final TN concentration of the leachate was 409.42 ± 139.19 mg/L, with an average TN reduction efficiency of 89.73 ± 4.62%. The average Cd concentration in the leachate was 0.0012 ± 0.0013 mg/L, with an average Cd concentration reduction efficiency of 92.30 ± 8.48%. The final TSS and Cd concentrations met the leachate quality standards, with values of 100 mg/L and 0.1000 mg/L, respectively. However, the final TN concentration did not meet the leachate quality standards, as the final TN concentration in the leachate was 60 mg/L.
Czasopismo
Rocznik
Tom
Strony
124--135
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Program Study of Environmental Engineering, Faculty of Engineering, Universitas PGRI Adi Buana Surabaya, Dukuh Menanggal XII/4 Surabaya, 60234, Indonesia
autor
- Program Study of Environmental Engineering, Faculty of Engineering, Universitas PGRI Adi Buana Surabaya, Dukuh Menanggal XII/4 Surabaya, 60234, Indonesia
autor
- Program Study of Environmental Engineering, Faculty of Engineering, Universitas PGRI Adi Buana Surabaya, Dukuh Menanggal XII/4 Surabaya, 60234, Indonesia
autor
- Program Study of Biology, Faculty of Science and Technology, Universitas PGRI Adi Buana Surabaya, Dukuh Menanggal XII/4 Surabaya, 60234, Indonesia
Bibliografia
- 1. Touzani A, El Hammoudani Y, Dimane F, Tahiri M, Haboubi K. 2024. Characterization of leachate and assessment of the leachate pollution index – a study of the controlled landfill in fez. Ecol Eng Environ Technol. 25(4), 57–69.
- 2. Abdel-Shafy HI, Ibrahim AM, Al-Sulaiman AM, Okasha RA. 2024. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Eng J. 15(1), 102293. https://doi.org/10.1016/j.asej.2023.102293
- 3. Saeed T, Miah MJ, Majed N, Hasan M, Khan T. 2020 Aug 1. Pollutant removal from landfill leachate employing two-stage constructed wetland mesocosms: co-treatment with municipal sewage. Environ Sci Pollut Res. 27(22): 28316–32. https://link.springer.com/article/10.1007/s11356-020-09208-y
- 4. Bakhshoodeh R, Alavi N, Oldham C, Santos RM, Babaei AA, Vymazal J, Paydary P. 2020 Mar 1. Constructed wetlands for landfill leachate treatment: A review. Ecol Eng. 146, 105725.
- 5. Ratnawati R, Sugito, Khoiriyah SFU. 2024. Treatment for landfill leachate utilize coagulation-flocculation combined with biofilter. In: Jurnal Teknologi Lingkungan. 94–101.
- 6. Nurhayati I, Ratnawati R, Sutrisno J, Pramana YB, Oktavitri NI. 2021. microalgae scenedesmus sp potential in phytoremediation of kalidami retention pond with potassium and carbon addition. Pollut Res. 40(1), 194–8.
- 7. Aveiga A, Banchón C, Sabando R, Delgado M. 2023. Exploring the phytoremediation capability of Athyrium filix-femina, Ludwigia peruviana and Sphagneticola trilobata for heavy metal contamination. J Ecol Eng. 24(7), 165–74.
- 8. Ketaubon P, Ritthikasem N, Tanheng P, Prapagdee B. 2024. Enhancing heavy metal phytoremediation in landfill soil by Chrysopogon zizanioides (L.) roberty through the application of bacterial-biochar pellets. Environ Technol Innov. 35, 103738. https://doi.org/10.1016/j.eti.2024.103738
- 9. Ratnawati R, Faizah. 2020. Phytoremediation of mercury contaminated soil with the addition of compost. J Eng Technol Sci. 52(1), 66–80.
- 10. Sial TA, Teewno AM, Memon SA, Mahar RB, Korai MS. 2023. Municipal solid waste landfill leachate treatment by Phragmites australis, Typha latifolia and Scirpus validus through Constructed Wetlands. J Ecol Eng. 24(6), 303–14.
- 11. Ratnawati R, Sari DP, Mukhtarr NA. 2024. Leachate treatment using sub-surface flow constructed wetland by Hippochaetes lymenalis. J Nat Resour Environ Manag. 14(2), 298–305.
- 12. Mangkoedihardjo S, Arliyani I. 2023. Performance of selected plants based growth on landfill leachate treatment using wetland application. Israa Univ J Appl Sci. 6(2), 71–84.
- 13. Yuliasni R, Kurniawan SB, Marlena B, Hidayat MR, Kadier A, Ma PC. 2023. Recent progress of phytoremediation-based technologies for industrial wastewater treatment. Phycoremediation Process Ind Wastewater Treat. 24(2), 21–42.
- 14. Bhat SA, Bashir O, Ul Haq SA, Amin T, Rafiq A, Ali M, Américo-Pinheiro JHP, Sher F. 2022. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere. 303(1), 134788. https://doi.org/10.1016/j.chemosphere.2022.134788
- 15. Makarova A, Nikulina E, Avdeenkova T, Pishaeva K. 2021. The improved phytoextraction of heavy metals and the growth of Trifolium repens L.: The role of K2HEDP and plant growth regulators alone and in combination. Sustain. 13(5), 1–18.
- 16. Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. 2024. A new hyperaccumulator plant (Spergularia rubra) for the decontamination of mine tailings through electrokinetic-assisted phytoextraction. Sci Total Environ. 912(December 2023).
- 17. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 11, 1–15.
- 18. Shahid MJ, AL-surhanee AA, Kouadri F, Ali S, Nawaz N, Afzal M, 2020. Role of microorganisms in the remediation of wastewater in floating treatment wetlands: A review. Sustain. 12(14), 1–29.
- 19. Saran A, Fernandez L, Cora F, Savio M, Thijs S, Vangronsveld J, Merini LJ. 2020. Phytostabilization of Pb and Cd polluted soils using Helianthus petiolaris as pioneer aromatic plant species. Int J Phytoremediation. 22(5), 459–67.
- 20. Mirwan M, Pramesti TA. 2023. Reducing TSS and COD of leachate with constructed wetland using water jasmine (Echinodorus palaefolious) and spider plant (Chlorophytum comosum). 239–44.
- 21. Ramadhani J, Asrifah RD, Wahyuning I. 2019. Leachate treatment using the constructed wetland method at the Tanjungrejo Waste Landfill, Tanjungrejo Village, Jekulo District, Kudus Regency. Geo-Environmental Sci J. 1(12), 1–8.
- 22. Tangahu BV, Ningsih DA, Kurniawan SB, Imron MF. 2019. Study of BOD and COD removal in batik wastewater using Scirpus grossus and Iris pseudacorus with intermittent exposure system. J Ecol Eng. 20(5), 130–4.
- 23. Ratnawati R, Fatmasari RD. 2018. Phytoremediation of lead (Pb) contaminated soil using Sansevieria trifasciata and Celosia plumosa. Al-Ard J Tek Lingkung. 3(2), 62–9.
- 24. Minister of Environment and Forestry of the Republic of Indonesia 2016. No. P.59. About Leachate Landfill Quality Standard and/or Activities of Landfill. 1–12.
- 25. Nurhayati I, Ratnawati R, Sugito. 2019. Effects of potassium and carbon addition on bacterial algae bioremediation of boezem water. Environ Eng Res. 24(3), 495–500.
- 26. Ratnawati R, Nurhayati I, Titis N, Oktavitri NI. 2020. Kalidami retention ponds phytoremediation with nutrient addition from Scenedesmus sp.: A microlagae. Pollut Res. 39(4), 1042–6.
- 27. American Public Health, American Water Works. 2023. A Waster Environment F. Standard Methods for the Examination of Water and Wastewater, 24th ed. In: Lipps WC, Bram-Howland EB, Baxter TE: Washington DC: APHA Press.
- 28. Ilmannafian AG, Kiptiah M, Darmawan MI. 2021. The effectiveness of filtration and phytoremediation with combination of aquatic plants in wastewater treatment of Sasirangan industry. IOP Conf Ser Earth Environ Sci. 926(1).
- 29. Purwanti IF, Obenu A, Tangahu BV, Kurniawan SB, Imron MF, Abdullah SRS. 2020. Bioaugmentation of Vibrio alginolyticus in phytoremediation of aluminium-contaminated soil using Scirpus grossus and Thypa angustifolia. Heliyon. 6(9), e05004. https://doi.org/10.1016/j.heliyon.2020.e05004
- 30. Ismail N ‘Izzati, Abdullah SRS, Idris M, Kurniawan SB, Effendi Halmi MI, AL Sbani NH, Jehawi SH, Hasan HA. 2020. Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands. J Environ Manage. 267, 110643. https://doi.org/10.1016/j.jenvman.2020.110643
- 31. Al-Ajalin FAH, Idris M, Abdullah SRS, Kurniawan SB, Imron MF. 2020. Evaluation of short-term pilot reed bed performance for real domestic wastewater treatment. Environ Technol Innov. 20, 101110. https://doi.org/10.1016/j.eti.2020.101110
- 32. Jehawi OH, Abdullah SRS, Kurniawan SB, Ismail N ‘Izzati, Idris M, Al Sbani NH, Muhamad MH, Hasan HA. 2020. Performance of pilot Hybrid Reed Bed constructed wetland with aeration system on nutrient removal for domestic wastewater treatment. Environ Technol Innov. 19, 100891. https://doi.org/10.1016/j.eti.2020.100891
- 33. Rahimi S, Modin O, Mijakovic I. 2020. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv. 43, 107570. https://doi.org/10.1016/j.biotechadv.2020.107570
- 34. Harne K, Joshi H, Wankhade R. 2022. Phytoremediation an effective technique for domestic wastewater treatment phytoremediation: An effective technique for domestic wastewater treatment. Res Sq. https://doi.org/10.21203/rs.3.rs-1955793/v1
- 35. Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203
- 36. Sikhosana MLM, Botha A, Monyatsi LM, Coetzee MAA. 2020. Evaluating the effect of seasonal temperature changes on the efficiency of a rhizofiltration system in nitrogen removal from urban runoff. J Environ Manage. 274(111192).
- 37. Chamoli A, Bhambri A, Karn SK, Raj V. 2024. Ammonia, nitrite transformations and their fixation by different biological and chemical agents. Chem Ecol. 40(2), 166–99.
- 38. Pramesti TA, Mirwan M. 2023. Removal TSS, COD, and Total Nitrogen leachate with constructed wetland using water jasmine (Echinodorus palaefolius). J Pengendali Pencemaran Lingkung. 5(2), 189–95.
- 39. Ahmad I, Alserae H, Zhu B, Zahoor A, Farooqi ZUR, Mihoub A, Ain QU, Radicetti
- 40. E. 2024. Phytoremediation of Cadmium: A Review. Springer Water.; Part F 2532, 75–99.
- 41. Sophia S, Shetty Kodialbail V. 2020. Phytoremediation of soil for metal and organic pollutant removal. Vol. 104, Bioprocess Engineering for Bioremediation. 45–66.
- 42. Varma M, Gupta AK, Ghosal PS, Majumder A. 2021. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Sci Total Environ. 755.
- 43. Nirwisaya PM, Titah HS. 2023. Phytotoxicity test of cadmium and lead on Sunflower (Helianthus annuus L.) as first step in phytoremediation. In: IOP Conference Series: Earth and Environmental Science.
- 44. Šourková M, Adamcová D, Zloch J, Skutnik Z, Vaverková MD. 2020. Evaluation of the phytotoxicity of leachate from a municipal solid waste landfill: The case study of bukov landfill. Environ. 7(12), 1–14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35f7a778-9a52-4f0d-962c-e5964b72c0ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.