PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Axial stiffness for large-scale ball slewing rings with four-point contact

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with the design of slewing rings (slewing bearings). A fully parametric, 3D virtual model of a ball slewing ring with four-point contact was created in the PTC/Creo Parametric CAD system. This model was subsequently used for finite-element analysis using Ansys/Workbench CAE software. The purpose of the FEM analysis was to determine the axial stiffness characteristics. Results of FEM analysis were experimentally verified using a test bench. At the end of the article, we present the nomograms of the deformation constant for different pitch diameters, rolling element diameters and contact angles.
Rocznik
Strony
art. no. e136725
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Zilina, Faculty of Mechanical Engineering, Department of Design and Machine Elements, Slovak Republic
autor
  • University of Zilina, Faculty of Mechanical Engineering, Department of Design and Machine Elements, Slovak Republic
  • University of Zilina, Institute of Competitiveness and Innovations, Slovak Republic
Bibliografia
  • [1] Y. Guo and R.G. Parker, “Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model”, Mech. Mach. Theory 51, 32–45 (2012).
  • [2] G. Chen and H. Wang, “Contact stress and radial stiffness of a cylindrical roller bearing with corrected roller generator”, Trans. Can. Soc. Mech. Eng. 40(5), 725–738 (2016).
  • [3] L. Kania, R. Pytlarz, and S. Spiewak, “Modification of the raceway profile of a single-row ball slewing bearing”, Mech. Mach. Theory 128, 1–15 (2018).
  • [4] R. Skyba, S. Hrček, L. Smetanka, and M. Majchrák, “Stiffness analysis of slewing bearings”, IOP Conf. Ser: Mater. Sci. Eng. 393, 012060 (2018).
  • [5] P.P. Hou, L.Q. Wang, and Q.Y. Peng, “Vibration analysis of ball bearing considering waviness under high speed and an axial load”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 517–527 (2020).
  • [6] P. Ding, H. Wang, Y.F. Dai, J. Chen, H. Zhang, and F.Z. Sun, “MDCCS Based Multistage Life Prediction of Slewing Bearing with a Novel Performance Description: an Improved Variational Mode Decomposition Approach”, Exp. Tech. 43, 341–358 (2019).
  • [7] Y. Zhang, B. Fang, L. Kong, and Y. Li, “Effect of the ring misalignment on the service characteristics of ball bearing and rotor system”, Mech. Mach. Theory 151, 103889 (2020).
  • [8] V.S. Nagarajan, V. Kamaraj, and S. Sivaramakrishnan, “Geometrical sensitivity analysis based on design optimization and multiphysics analysis of PM assisted synchronous reluctance motor”, Bull. Pol. Acad. Sci. Tech. Sci. 67(1), 155–163 (2019).
  • [9] E. Kurvinen, J. Sopanen, and A. Mikkola, “Ball bearing model performance on various sized rotors with and without centrifugal and gyroscopic forces”, Mech. Mach. Theory 90, 240−260 (2015).
  • [10] G. Chen, G. Wen, Z. Xiao, and H. San, , “Experimental Study on Contact Force in a Slewing Bearing”, J. Tribol. 140(2), 021402 (2018).
  • [11] I. Heras, J. Aguirrebeitia, M. Abasolo, and I. Coria, “An engineering approach for the estimation of slewing bearing stiffness in wind turbine generators”, Wind Energy 22, 376–391 (2018).
  • [12] T.J. Royston and I. Basdogan, “Vibration transmission through self-aligning (spherical) rolling element bearings”, J. Sound Vibr. 215, 997–1014 (1998).
  • [13] F. Bogard, S. Murer, L. Rasolofondraibe, and B. Pottier, “Numerical determination of the mechanical stiffness of a force measurement device based on capacitive probes: Application to roller bearings”, J. Comput. Des. Eng. 4, 29–36 (2017).
  • [14] T.L.H. Walford and B.J. Stone, “The measurement of the radial stiffness of rolling element bearings under oscillating conditions”, J. Eng. Mech. Eng. Sci.22, 175–181 (1980).
  • [15] R. Tiwari and V. Chakravarthy, “Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor-bearing systems”, Mech. Syst. Signal Proc. 20, 1590–1614 (2006).
  • [16] M.J. Goodwin, “Experimental Techniques for bearing impedance measurement”, J. Eng. Ind. 113(3), 335–342 (1991).
  • [17] N. Bessous, S. Sbaa, and A.C. Megherbi, “Mechanical fault detection in rotating electrical machines using MCSA-FFT and MCSA-DWT techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 571–582 (2019).
  • [18] P. He, Y. Wang, H. Liu, E. Guo, and H. Wang, ”Optimization design of structural parameters of single-row four-point contact ball slewing bearing”, J. Braz. Soc. Mech. Sci. Eng. 42, 291 (2020).
  • [19] J. Brandlein, P. Eschmann, L. Hasbargen, and K. Weigand, Ball and roller bearings – theory, design and application, John Wiley&Sons Ltd., 2000.
  • [20] I. Heras, J. Aguirrebeitia, M. Abasolo, I. Coria, and I. Escanciano, “Load distribution and friction torque in four-point contact slewing bearings considering manufacturing errors and ring flexibility”, Mech. Mach. Theory 137, 23–26 (2019).
  • [21] D. Gunia and T. Smolnicki, “The influence of the geometrical parameters for stress distribution in wire raceway slewing bearing”, Arch. Mech. Eng. 64(3), 315–326 (2017).
  • [22] A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 477–483 (2020).
  • [23] S. Hrček, V. Kraus, R. Kohár, Š. Medvecký, and P. Lehocký, “Construction of a bearing testing apparatus to assess lifetime of large-scale bearings”, Commun: Sci. Lett. Univ. Žilina 11(2), 57–64 (2009).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35f429f0-1dc1-4898-ac03-6072d5b778d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.