PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Magnetic signature of indoor air pollution: household dust study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combination of magnetic and geochemical methods was used to determine the mineralogy, grain size and domain structure of magnetic particles in indoor dust collected in 195 sites in Warsaw, Poland. Data show an asymmetric distribution of magnetic susceptibility (χ) in the wide range of 20-1514 × 10-8 m³ kg–1. Comparison of magnetic parameters shows that the internal dust contains outside pollution characteristic for air and soil. More than 90% of indoor dust samples were characterized by roughly uniform magnetic mineralogy, typical for fine grained magnetite (diameter of 0.2-5 μm), and grain size between pseudo-singledomain and small multi-domain with small contribution of superparamagnetic particles (~10%). Samples with χ larger than 220 × 10–8 m³ kg–1 contain mainly magnetite and an anthropogenic metallic Fe with TC > 700°C. The indoor dust contains, characteristic for the urban areas, spherical magnetic particles originated from fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements, including Na, Ca, Al, Si, K, S, Mn, Cl, and Mg.
Czasopismo
Rocznik
Strony
1478--1503
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Angulo, E. (1996), The Tomlinson Pollution Load Index applied to heavy metal “Mussel-Watch” data: a useful index to assess coastal pollution, Sci. Total Environ. 187,1, 19–56, DOI: 10.1016/0048-9697(96)05128-5. http://dx.doi.org/10.1016/0048-9697(96)05128-5
  • [2] Braniš, M., and J. Kolomazníková (2010), Monitoring of long-term personal exposure to fine particulate matter (PM2.5), Air Qual. Atmos. Health 3,4, 235–243, DOI: 10.1007/s11869-010-0072-9. http://dx.doi.org/10.1007/s11869-010-0072-9
  • [3] Bućko, M.S., T. Magiera, L.J. Pesonen, and B. Janus (2010), Magnetic, geochemical, and microstructural characteristics of road dust on roadsides with dif ferent traffic volumes — Case study from Finland, Water Air Soil Pollut. 209,1–4, 295–306, DOI: 10.1007/s11270-009-0198-2. http://dx.doi.org/10.1007/s11270-009-0198-2
  • [4] Chao, Ch.Y.H. (2001), Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study, Build. Environ. 36,9, 999–1007, DOI: 10.1016/S0360-1323(00)00057-3. http://dx.doi.org/10.1016/S0360-1323(00)00057-3
  • [5] Day, R., M. Fuller, and V.A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter. 13,4, 260–267, DOI: 10.1016/0031-9201(77)90108-X. http://dx.doi.org/10.1016/0031-9201(77)90108-X
  • [6] Dearing, J.A., K.L. Hay, S.M.J. Baban, A.S. Huddleston, E.M.H. Wellington, and P.J. Loveland (1996), Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set, Geophys. J. Int. 127,3, 728–734, DOI: 10.1111/j.1365-246X.1996.tb04051.x. http://dx.doi.org/10.1111/j.1365-246X.1996.tb04051.x
  • [7] Dunlop, D.J. (2002a), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res. 107,B3, 2056, DOI: 10.1029/2001JB000486. http://dx.doi.org/10.1029/2001JB000486
  • [8] Dunlop, D.J. (2002b), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 2. Application to data for rocks, sediments, and soils, J. Geophys. Res. 107,B3, 2057, DOI: 10.1029/2001JB000487. http://dx.doi.org/10.1029/2001JB000487
  • [9] Dunlop, D.J., and Ö Özdemir (1997), Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, Cambridge, 573 pp. http://dx.doi.org/10.1017/CBO9780511612794
  • [10] Fischer, P.H., G. Hoek, H. van Reeuwijk, D.J. Briggs, E. Lebret, J.H. van Wijnen, S. Kingham, and P.E. Elliott (2000), Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam, Atmos. Environ. 34,22, 3713–3722, DOI: 10.1016/S1352-2310(00)00067-4. http://dx.doi.org/10.1016/S1352-2310(00)00067-4
  • [11] Goodarzi, F. (2006), Characteristics and composition of fly ash from Canadian coalfired power plants, Fuel 85,10–11, 1418–1427, DOI: 10.1016/j.fuel.2005.11.022. http://dx.doi.org/10.1016/j.fuel.2005.11.022
  • [12] Górka-Kostrubiec, B., E. Król, and M. Jeleńska (2012), Dependence of air pollution on meteorological conditions based on magnetic susceptibility measurements: a case study from Warsaw, Stud. Geophys. Geod. 56,3, 861–877, DOI: 10.1007/s11200-010-9094-x. http://dx.doi.org/10.1007/s11200-010-9094-x
  • [13] Guo, H., L. Morawska, C. He, Y. Zhang, G. Ayoko, and M. Cao (2010), Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air, Environ. Sci. Pollut. Res. 17,6, 1268–1278, DOI: 10.1007/s11356-010-0306-2. http://dx.doi.org/10.1007/s11356-010-0306-2
  • [14] Gworek, B., and W. Kwasowski (2001), Automotive impact on the environment. In: B. Gworek and A. Macka (eds.), Circuit Elements in Nature-Toxicity-Prevention, Vol. 1, Instytut Ochrony Środowiska, Warszawa, 39–48.
  • [15] Halsall, C.J., B.A. Maher, V.V. Karloukovski, P. Shah, and S.J. Watkins (2008), A novel approach to investigating indoor/outdoor pollution links: Combined magnetic and PAH measurements, Atmos. Environ. 42,39, 8902–8909, DOI: 10.1016/j.atmosenv.2008.09.001. http://dx.doi.org/10.1016/j.atmosenv.2008.09.001
  • [16] He, C., L. Morawska, J. Hitchins, and D. Gilbert (2004), Contribution from indoor sources to particle number and mass concentrations in residential houses, Atmos. Environ. 38,21, 3405–3415, DOI: 10.1016/j.atmosenv.2004.03.027. http://dx.doi.org/10.1016/j.atmosenv.2004.03.027
  • [17] Hrouda, F. (2011), Models of frequency-dependent susceptibility of rocks and soils revisited and broadened, Geophys. J. Int. 187,3, 1259–1269, DOI: 10.1111/j.1365-246X.2011.05227.x. http://dx.doi.org/10.1111/j.1365-246X.2011.05227.x
  • [18] Jeleńska, M., B. Górka-Kostrubiec, and E. Król (2011), Magnetic properties of dust as indicators of indoor air pollution: Preliminary results. In: M.R.. Dudzińska (ed.), Management of Indoor Air Quality, Taylor and Francis Group, London, 129–136. http://dx.doi.org/10.1201/b11336-14
  • [19] Jordanova, D., N. Jordanova, Ph. Lanos, P. Petrov, and T. Tsacheva (2012), Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality, Geochem. Geophys. Geosyst. 13,8, Q08Z49, DOI: 10.1029/2012GC004160. http://dx.doi.org/10.1029/2012GC004160
  • [20] Jordanova, N., D. Jordanova, B. Henry, M. Le Goff, D. Dimov, and T. Tsacheva (2006), Magnetism of cigarette ashes, J. Magn. Magn. Mater. 301,1, 50–66, DOI: 10.1016/j.jmmm.2005.06.008. http://dx.doi.org/10.1016/j.jmmm.2005.06.008
  • [21] Kasper, M., K. Sattler, K. Siegmann, U. Matter, and H.C. Siegmann (1999), The influence of fuel additives on the formation of carbon during combustion, J. Aerosol Sci. 30,2, 217–225, DOI: 10.1016/S0021-8502(98)00034-2. http://dx.doi.org/10.1016/S0021-8502(98)00034-2
  • [22] Katsoyiannis, A., and Ch. Bogdal (2012), Interactions between indoor and outdoor air pollution — Trends and scientific challenges, Environ. Pollut. 169, 150–151, DOI: 10.1016/j.envpol.2012.04.028. http://dx.doi.org/10.1016/j.envpol.2012.04.028
  • [23] Kądziałko-Hofmokl, M. (2001), Rock-magnetic study of the Gogołów-Jordanów serpentinite unit of the Paleozoic Sudetic ophiolite (South Poland), Ofioliti 26,2b, 425–432, DOI: 10.4454/ofioliti.v26i2b.164.
  • [24] Kądziałko-Hofmokl, M., and J. Kruczyk (1976), Complete and partial self-reversal of natural remanent magnetization of basaltic rocks from Lower Silesia, Poland, Pure Appl. Geophys. 114,2, 207–213, DOI: 10.1007/BF00878946. http://dx.doi.org/10.1007/BF00878946
  • [25] Kim, W., S.J. Doh, Y.H. Park, and S.T. Yun (2007), Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea, Atmos. Environ. 41,35, 7627–7641, DOI: 10.1016/j.atmosenv.2007.05.050. http://dx.doi.org/10.1016/j.atmosenv.2007.05.050
  • [26] Kim, W., S.J. Doh, and Y. Yu (2009), Anthropogenic contribution of magnetic particulates in urban roadside dust, Atmos. Environ. 43,19, 3137–3144, DOI: 10.1016/j.atmosenv.2009.02.056. http://dx.doi.org/10.1016/j.atmosenv.2009.02.056
  • [27] King, J., S.K. Banerjee, J. Marvin, and Ö. Özdemir (1982), A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments, Earth Planet. Sci. Lett. 59,2, 404–419, DOI: 10.1016/0012-821X(82)90142-X. http://dx.doi.org/10.1016/0012-821X(82)90142-X
  • [28] Kingham, S., D. Briggs, P. Elliott, P. Fischer, and E. Lebret (2000). Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England, Atmos. Environ. 34,6, 905–916, DOI: 10.1016/S1352-2310(99)00321-0. http://dx.doi.org/10.1016/S1352-2310(99)00321-0
  • [29] Kozanecka, T., K. Czarnowska, and A. Jaworska (2003), Content of heavy metals in road coarse dust of Warsaw environs, Rocz. Glebozn. 54,3, 73–78.
  • [30] Król, E., B. Górka-Kostrubiec, and M. Jeleńska (2013), The magnetometric study of indoor air pollution inside flats located in Warsaw and its suburbs. In: A. Pawłowski, M. Dudzińska, and L. Pawłowski (eds.), Environmental Engineering IV, Taylor and Francis Group, London, 323–329. http://dx.doi.org/10.1201/b14894-50
  • [31] Layton, D.W., and P.I. Beamer (2009), Migration of contaminated soil and airborne particulates to indoor dust, Environ. Sci. Technol. 43,21, 8199–8205, DOI: 10.1021/es9003735. http://dx.doi.org/10.1021/es9003735
  • [32] Lonati, G., S. Cernuschi, and M. Giugliano (2011), The duration of PM10 concentration in a large metropolitan area, Atmos. Environ. 45,1, 137–146, DOI: 10.1016/j.atmosenv.2010.09.033. http://dx.doi.org/10.1016/j.atmosenv.2010.09.033
  • [33] Magiera, T., M. Jabłońska, Z. Strzyszcz, and M. Rachwał (2011), Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts, Atmos. Environ. 45,25, 4281–4290, DOI: 10.1016/j.atmosenv.2011. 04.076. http://dx.doi.org/10.1016/j.atmosenv.2011.04.076
  • [34] Muxworthy, A.R., E. Schmidbauer, and N. Petersen (2002), Magnetic properties and Mössbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany, Geophys. J. Int. 150,2, 558–570, DOI: 10.1046/j.1365-246X.2002.01725.x. http://dx.doi.org/10.1046/j.1365-246X.2002.01725.x
  • [35] Muxworthy, A.R., J. Matzka, A.F. Davila, and N. Petersen (2003), Magnetic signature of daily sampled urban atmospheric particles, Atmos. Environ. 37,29, 4163–4169, DOI: 10.1016/S1352-2310(03)00500-4. http://dx.doi.org/10.1016/S1352-2310(03)00500-4
  • [36] Park, K., and H.D. Dam (2010), Characterization of metal aerosols in PM10 from urban, industrial, and Asian Dust sources, Environ. Monit. Assess. 160,1–4, 289–300, DOI: 10.1007/s10661-008-0695-6. http://dx.doi.org/10.1007/s10661-008-0695-6
  • [37] Pastuszka, J.S., W. Rogula-Kozłowska, and E. Zajusz-Zubek (2010), Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes, Environ. Monit. Assess. 168,1–4, 613–627, DOI: 10.1007/s10661-009-1138-8. http://dx.doi.org/10.1007/s10661-009-1138-8
  • [38] Qiao, Q., C. Zhang, B. Huang, and J.D.A. Piper (2011), Evaluating the environmental quality impact of the 2008 Beijing Olympic Games: magnetic monitoring of street dust in Beijing Olympic Park, Geophys. J. Int. 187,3, 1222–1236, DOI: 10.1111/j.1365-246X.2011.05195.x. http://dx.doi.org/10.1111/j.1365-246X.2011.05195.x
  • [39] Sagnotti, L., P. Macri, R. Egli, and M. Mondino (2006), Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthro pogenic PM10 sources, J. Geophys. Res. 111, B12, B12S22, DOI: 10.1029/2006JB004508.
  • [40] Szönyi, M., L. Sagnotti, and A.M. Hirt (2008), A refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus Ilex tree leaves, Geophys. J. Int. 173,1, 127–141, DOI: 10.1111/j.1365-246X.2008.03715.x. http://dx.doi.org/10.1111/j.1365-246X.2008.03715.x
  • [41] Thompson, R., and F. Oldfield (1986), Environmental Magnetism, Allen and Unwin, London. http://dx.doi.org/10.1007/978-94-011-8036-8
  • [42] Tomlinson, D.L., J.G. Wilson, C.R. Harris, and D.W. Jeffrey (1980), Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index, Helgolander Meeresun. 33,1–4, 566–575, DOI: 10.1007/BF02414780. http://dx.doi.org/10.1007/BF02414780
  • [43] Wan, M.P., C.L. Wu, G.N.S. To, T.C. Chan, and C.Y.H. Chao (2011), Ultrafine particles and PM2.5 generated from cooking in homes, Atmos. Environ. 45,34, 6141–6148, DOI: 10.1016/j.atmosenv.2011.08.036. http://dx.doi.org/10.1016/j.atmosenv.2011.08.036
  • [44] Wang, G., F. Oldfield, D. Xia, F. Chen, X. Liu, and W. Zhang (2012), Magnetic properties and correlation with heavy metals in urban street dust: A case study from the city of Lanzhou, China, Atmos. Environ. 46, 289–298, DOI: 10.1016/j.atmosenv.2011.09.059.
  • [45] Wang, X.S., and Y. Qin (2007), Relationships between heavy metals and iron oxides, fulvic acids, particle size fractions in urban roadside soils, Environ. Geol. 52,1, 63–69, DOI: 10.1007/s00254-006-0449-0. http://dx.doi.org/10.1007/s00254-006-0449-0
  • [46] Yang, T., Q. Liu, H. Li, Q. Zeng, and L. Chan (2010), Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications, Atmos. Environ. 44,9, 1175–1185, DOI: 10.1016/j.atmosenv. 2009.12.028. http://dx.doi.org/10.1016/j.atmosenv.2009.12.028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35eb1d3d-09b7-4d3f-bfe0-b10e1a6cab9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.