PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biogeography-inspired multiobjective optimization for helping MEMS synthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to assess the applicability of a multi-objective biogeography- based optimisation algorithm in MEMS synthesis. In order to test the performances of the proposed method in this research field, the optimal shape design of an electrostatic micromotor, and two different electro-thermo-elastic microactuators are considered as the case studies.
Rocznik
Strony
607--623
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wz.
Twórcy
autor
  • Department of Electrical, Computer and Biomedical Engineering, University of Pavia Via Ferrata 5, 27100 Pavia, Italy
  • Department of Electrical, Computer and Biomedical Engineering, University of Pavia Via Ferrata 5, 27100 Pavia, Italy
autor
  • Department of Civil Engineering and Architecture, University of Pavia Via Ferrata 3, 27100 Pavia, Italy
autor
  • Institute of Mechatronics and Information Systems, Łódz University of Technology Stefanowskiego 18/22 Str., 90-924 Łódz, Poland
Bibliografia
  • [1] Di Barba P., Dolezel I., Karban P., Kus P., Mach F., Mognaschi M.E., Savini A., Multiphysics field analysis and multiobjective design optimization: a benchmark problem, Inverse Problems in Science and Engineering (IPSE), vol. 22, no. 7 (2014).
  • [2] Di Barba P., Mognaschi M.E., Sorting Pareto solutions: a principle of optimal design for electrical machines, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – Compel, vol. 28 no. 5, pp. 1227-1235 (2009).
  • [3] Sieni E., Di Barba P., Forzan M., Migration NSGA: method to improve a non-elitist searching of Pareto front, with application in magnetics, Inverse Problems in Science and Engineering (IPSE), vol. 4, pp. 543-566 (2016).
  • [4] Deb K., Multi-Objective Optimisation Using Evolutionary Algorithms, Wiley (2001).
  • [5] Coelho L.S., Alotto P., Electromagnetic Optimization Using a Cultural Self-Organizing Migrating Algorithm Approach Based on Normative Knowledge, IEEE Trans. Magn., vol. 45, no. 3, pp. 1446-1449 (2009).
  • [6] Deep K., A self-organizing migrating genetic algorithm for constrained optimization, Appl. Math. Comput., vol. 198, no. 1, pp. 237-250 (2008).
  • [7] Tang W., Nguyen T. and Howe R., Laterally driven polysilicon resonant microstructures, Sensors and actuators, vol. 20, pp. 25-32 (1989).
  • [8] Boudaoud M., Haddab Y., Le Gorrec Y., Modeling and optimal force control of a nonlinear electrostatic microgripper, IEEE/ASME Trans. Mechatronics, vol. 18, no. 3, pp. 1130-1139 (2013).
  • [9] Delinchant B., Rakotoarison H.L., Ardon V., Chabedec O., Cugat O., Gradient based optimization of semi-numerical models with symbolic sensitivity: Application to simple ferromagnetic MEMS switch device, IJAEM, vol. 30, pp. 189-200 (2009).
  • [10] Grossard M., Rotinat-Libersa M.C., Chaillet N., Boukallel L., Mechanical and control-oriented design of a monolithic piezoelectric microgripper using a new topological optimization method, IEEE/ASME Trans. Mechatronics, vol. 14, no. 1, pp. 32-45 (2009).
  • [11] Di Barba P., Lorenzi A., A Magneto-thermo-elastic identification problem with a moving boundary in a micro-device, Milan J. of Mathematics, vol. 81, pp. 347-383 (2013).
  • [12] Yang Y.P., Liu J.J., Ye D.H., Chen, Y.R., Lu P.H., Multiobjective Optimal Design and Soft Landing Control of an Electromagnetic Valve Actuator for a Camless Engine, IEEE/ASME Trans. Mechatronics, vol. 18, no. 3, pp. 963-972 (2013).
  • [13] Hu L., Lee K.M., Fu X., A method based on measured boundary conditions for reconstructing the magnetic field distribution of an electromagnetic mechatronic system, IEEE/ASME Trans. Mechatronics, vol. 15, no. 4, pp. 595-602 (2010).
  • [14] Di Barba P., Wiak S., Evolutionary Computing and Optimal Design of MEMS, IEEE Trans. on Mechatronics, vol. 20, no. 4, pp. 1660-1667 (2015).
  • [15] Du D., Simon D., Complex system optimization using biogeography-based optimization, Mathematical Problems in Engineering (2013).
  • [16] Ma H., Su S., Simon D., Fei M., Ensemble multi-objective biogeography-based optimization with application to automated warehouse scheduling, Engineering Applications of Artificial Intelligence, vol. 44, pp. 79-90 (2015).
  • [17] Simon D., Biogeography-Based Optimization, IEEE Trans. on Evol. Comput., vol. 12, no. 6, pp. 702-713 (2008).
  • [18] Di Barba P., Dughiero F., Mognaschi M.E., Savini A., Wiak S., Biogeography-Inspired Multiobjective Optimization and MEMS Design, IEEE Trans. on Magnetics, vol. 53, no. 3 (2016).
  • [19] Di Barba P., Mognaschi M.E., Savini A., Wiak S., Island Biogeography as a Paradigm for MEMS Optimal Design, International Journal of Applied Electromagnetics and Mechanics IJAEM, vol. 51(s1), pp. 97-105 (2016).
  • [20] Di Barba P., Multiobjective Shape Design in Electricity and Magnetism, Springer (2010).
  • [21] Macarthur R.H., Wilson E.O., The Theory of Island Biogeography, Princeton University Press (1967).
  • [22] Roy P.K., Ghoshal S.P., Thakur S., Multi-objective Optimal Power Flow Using Biogeographybased Optimization, Electric Power Components and Systems, vol. 38, pp. 1406-1426 (2010).
  • [23] Singh S., Mittal E., Sachdeva G., NSBBO for Gain-Impedance Optimization of Yagi-Uda Antenna Design, Proc. 2012 World Congress on Information and Communication Technologies, pp. 856-860 (2012).
  • [24] Singh U., Kumar H., Kamal T.S., Design of Yagi-Uda Antenna Using Biogeography Based Optimization, IEEE Trans. on Antennas and Propagation, vol. 58, no. 10, pp. 3375-3379 (2010).
  • [25] Costa Silva M.A., Coelho L.S., Lebensztajn L., Multiobjective Biogeography-Based Optimization based on Predator-Prey Approach, IEEE Trans. on Magnetics, vol. 48, no. 2, pp. 951-954 (2012).
  • [26] Huang Q.A., Lee N.K.S., Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator, Microsystem technologies, vol. 5, pp. 133-137 (1999).
  • [27] http://www.mathworks.com, last visited on 18th October 2016.
  • [28] Fan L.S., Tai Y.C., Muller R., IC processed electrostatic microactuators, Sensors and Actuators, vol. 20, pp. 41-47 (1989).
  • [29] Fan L.S., Tai Y.C., Muller R., IC processed electrostatic synchronous microactuators, Sensors and Actuators, vol. 20, pp. 49-55 (1989).
  • [30] Mehregany M., Senturia S.D., Lang J.H., Nagarkar P., Micromotor fabrication, IEEE Trans. Electron Devices, vol. 39, pp. 2060-2069 (1992).
  • [31] Bart S.F., Mehregany M., Tavrow L.S., Lang J.H., Senturia S.D., Electric Micromotor Dynamics, IEEE Trans. on Electron Devices, vol. 39, no. 3 (1992).
  • [32] Bonet J., Wood R.D., Nonlinear continuum mechanics for finite element analysis, Cambridge University Press (2008).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35e3da5f-497b-4c09-b2c7-98d670d0328e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.