PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of positivity and stability of fractional discrete-time nonlinear systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The positivity and asymptotic stability of the fractional discrete-time nonlinear systems are addressed. Necessary and sufficient conditions for the positivity and sufficient conditions for the asymptotic stability of the fractional nonlinear systems are established. The proposed stability tests are based on an extension of the Lyapunov method to the positive fractional nonlinear systems. The effectiveness of tests is demonstrated on examples.
Rocznik
Strony
491--494
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
  • Faculty of Electrical Engineering, Białystok University of Technology, 45D Wiejska St., 15-351 Białystok
Bibliografia
  • [1] A. Czornik, Perturbation Theory for Lyapunov Exponents of Discrete Linear Systems, AGH University of Science and Technology Press, Kraków, 2012.
  • [2] A. Czornik, A. Nawrat, M. Niezabitowski, A. Szyda, “On the Lyapunov and Bohl exponent of time-varying discrete linear systems”, 20th Mediterranean Conf. on Control and Automation (MED), Barcelona, 194–197 (2012).
  • [3] A. Czornik, M. Niezabitowski, “Lyapunov Exponents for Systems with Unbounded Coefficients”, Dynamical Systems, 28 (2), 140–153 (2013).
  • [4] A. Czornik, A. Nawrat, M. Niezabitowski, “On the Lyapunov exponents of a class of the second order discrete-time linear systems with bounded perturbations”, Dynamical Systems, 28 (4), 473–483 (2013).
  • [5] A. Czornik, M. Niezabitowski, “On the stability of discrete time-varying linear systems”, Nonlinear Analysis. Hybrid Systems, 9, 27–41 (2013).
  • [6] A. Czornik, M. Niezabitowski, “On the stability of Lyapunov exponents of discrete linear system”, Proc. of European Control Conf., Zurich, 2210–2213 (2013).
  • [7] A. Czornik, J. Klamka, M. Niezabitowski, “On the set of Perron exponents of discrete linear systems”, Proc. of World Congress of the 19th International Federation of Automatic Control, 11740–11742 (2014).
  • [8] L. Farina, S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000.
  • [9] T. Kaczorek, “Analysis of positivity and stability of discrete-time and continuous-time nonlinear systems”, Computational Problems of Electrical Engineering, 5 (1) (2015).
  • [10] T. Kaczorek, “Descriptor positive discrete-time and continuous-time nonlinear systems”, Proc. of SPIE, 9290, doi:10.1117/12.2074558 (2014).
  • [11] T. Kaczorek, “Descriptor standard and positive discrete-time nonlinear systems”, Automatyzacja Procesów Dyskretnych, 1, 113–120 (2014).
  • [12] T. Kaczorek, “Minimum energy control of descriptor positive discrete-time linear systems”, COMPEL, 33 (3), 976–988 (2014).
  • [13] T. Kaczorek, “Minimum energy control of fractional descriptor positive discrete-time linear systems”, Int. J. Appl. Math. Sci., 24 (4), 735–743 (2014).
  • [14] T. Kaczorek, “Necessary and sufficient conditions for minimum energy control of positive discrete-time linear systems with bounded inputs”, Bull. Pol. Ac.: Tech., vol. 62 (1), 85–89 (2014).
  • [15] T. Kaczorek, Positive 1D and 2D systems, Springer Verlag, London, 2001.
  • [16] T. Kaczorek, “Positive descriptor discrete-time linear systems”, Problems of Nonlinear Analysis in Engineering Systems, vol. 1, no. 7, 1998, 38–54.
  • [17] T. Kaczorek, “Positive linear systems consisting of n subsystems with different fractional orders”, IEEE Trans. Circuits and Systems, vol. 58, no. 6, 2011, 1203–1210.
  • [18] T. Kaczorek, “Positive singular discrete time linear systems”, Bull. Pol. Ac.: Tech., 45(4), 619–631 (1997).
  • [19] T. Kaczorek, “Positivity and linearization of a class of nonlinear discrete-time systems by state feedbacks”, Logistyka, 6, 5078–5083 (2014).
  • [20] T. Kaczorek, “Positivity and stability of discrete-time nonlinear systems”, IEEE 2nd International Conference on Cybernetics, 156–159 (2015).
  • [21] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, 2012.
  • [22] P. Ostalczyk, “Discrete Fractional Calculus. Selected Applications in Control and Image Processing”, Series in Computer Vision, 4 (2016).
  • [23] H. Zhang, D. Xie, H. Zhang, G. Wang, “Stability analysis for discrete-time switched systems with unstable subsystems by a mode-dependent average dwell time approach”, ISA Transactions, 53, 1081–1086 (2014).
  • [24] J. Zhang, Z. Han, H. Wu, J. Hung, “Robust stabilization of discrete-time positive switched systems with uncertainties and average dwell time switching”, Circuits Syst. Signal Process., 33, 71–95 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35e1fb41-6828-424b-9a95-15d15b049b85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.