PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioługowanie metali ciężkich z odpadów pogalwanicznych przy neutralnym pH środowiska, w obecności bakterii produkujących biosurfaktanty

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Bioleaching of heavy metals from galvanic wastes at neutral pH in the presence of biosurfactant producing bacteria
Języki publikacji
PL
Abstrakty
EN
Precipitates and sludges from the galvanic industry are one of the sources of the environment contamination with heavy metals. Therefore, the investigations are carried out in order to developer the effective method of metals elimination from these wastes. The promising results are obtained in case of the application of microbial leaching. Up to now results concerned mainly the metals bioleaching in acidic environment. In this research work the possibility of heavy metals removal from galvanic wastes using the culture of sulphur oxidizing bacteria (pH 2-4) and a mixed culture of both sulphur oxidizing bacteria and biosurfactant producing bacteria (pH 6.5-8) was examined. It allowed to compare the process effectiveness in acidic and neutral environment. The cultures were prepared based on the activated sludge from the municipal wastewater treatment plant. The presence of sulphur oxidizing bacteria Acidithiobacillus ferrooxidans was confirmed using the PCR method. Bacillus subtilis and B. cereus strains were applied as biosurfactant producers. Three galvanic wastes, different in grain size, water content and heavy metal concentration, were bioleached. The research revealed that the metal release from galvanic wastes was more effective in presence of biosurfactant, especially in case of copper, but also for cadmium and chromium. The process effectiveness in acidic condition was comparatively lower. Zinc was the only metal that was bioleached faster in acidic environment, with similar final metal removal after 25 days of the process. The maximum values of metals elimination in the presence of biosurfactant depended on the bioleached waste type and were: 7.1-100% for copper, 3.7-50.3% for zinc, 30-50.5% for chromium, 34.1-71.9% for cadmium. The effectiveness of the nickel and lead removal was lower than 5%. The prolongation of the bioleaching period up to 40 days in case of waste C (the less susceptible to the bioleaching) resulted in elimination of 67.9% of Cu, 34.7% of Zn, 100% of Cr and 39.1% of Pb, while the effectiveness of nickel removal was still very low.
Słowa kluczowe
Rocznik
Tom
Strony
597--606
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Politechnika Warszawska
  • Politechnika Warszawska
Bibliografia
  • 1. Banat I.M., Makkar R.S., Cameotra S.S.: Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495–508 (2003).
  • 2. Bayat B., Sari B.: Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Journal of Hazardous Materials, 174, 163–169 (2010).
  • 3. Bednarik V., Vondruska M., Koutny M.: Stabilization/solidification of galvanic sludges by asphalt emulsions. Journal of Hazardous Materials B122, 139–145 (2005).
  • 4. Chen S.Y., Lin J.G.: Bioleaching of heavy metals from livestock sludge by indigenous sulfur oxidizing bacteria: effects of sludge solids concentration. Chemosphere, 54, 283–289 (2004).
  • 5. Christofi N., Ivshina I.B.: Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 93, 6, 915–929 (2002).
  • 6. Cioffi R., Lavorgna M., Santoro L.: Environmental and technological effectiveness of a process for the stabilization of a galvanic sludge. Journal of Hazardous Materials, B89, 165–175 (2002).
  • 7. Karwowska E., Łebkowska M., Tabernacka A., Andrzejewska D.: Eliminacja metali ciężkich z popiołów z użyciem roztworów ługujących zawierających bakterie utleniające siarkę lub bakterie produkujące biologiczne substancje powierzchniowo czynne. Rocznik Ochrona Środowiska, 3, 1133–1155 (2011).
  • 8. Karwowska E.: Mikrobiologiczne procesy usuwania metali ze ścieków i szlamów galwanizerskich. Prace naukowe Inżynieria Środowiska. Zeszyt 51. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2007.
  • 9. Lang S.: Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid and Interface Science, 7, 12–20 (2002).
  • 10. Łebkowska M.: Biologiczne związki powierzchniowo czynnej i ich zastosowanie do oczyszczania gruntów z produktów naftowych. Biotechnologia, 1, 64. 43–53 (2004).
  • 11. Lee I.-H., Wang Y.-J., Chern J.-M.: Extraction kinetics of heavy metalcontaining sludge. Journal of Hazardous Materials, B123, 112–119 (2005).
  • 12. Li C., Xie F., Ma Y, Cai T., Li H, Huang Z, Yuan G.: Multiple metal extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two stage acid leaching, Journal of Hazardous materials, 178, 823–833 (2010).
  • 13. Malgalhães J.M., Silva J.E., Castro F.P., Labrincha J.A.: Physical and chemical characterisation of metal finishing industrial wastes. Journal of Environmental Management, 75, 157–166 (2005).
  • 14. Mishra D., Kim D.-J., Ralph D.E., Ahn G.-J. Rhee Y.-H.: Bioleaching of Valuable metals from Waste Cathode Materials of the Lithium Ion Battery Industry Using Acidithiobacillus ferrooxidans. Conference Proceedings – Green Processing 2006.
  • 15. Ostrowski M., Skłodowska A.: Acid leaching in alkaline environment. Bulletin of the Polish Academy of Sciences. Biological Sciences, 44, 3–4, 279–283 (1996).
  • 16. PN-EN 903:2002. Jakość wody. Oznaczanie surfaktantów anionowych przez pomiar indeksu błękitu metylenowego MBAS.
  • 17. Rejinders L.: Disposal, uses and treatments of combustion ashes: a review. Resources, Conservation and Recycling, 43, 313–336 (2005).
  • 18. Silva J.E., Soares D., Paiva A.P., Labrincha A., Castro F.: Leaching behaviour of galvanic sludge in sulphuric acid and ammoniacal media. Journal of Hazardous Materials B121, 195–202 (2005).
  • 19. Sophia A.C., Swaminathan K.: Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste. Chemosphere, 58, 75–82 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35e18e17-ef97-46e8-9c0b-79d311fa3a55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.