PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On diffusion of chemically reactive species in a convective flow past an inclined plate with variable surface temperature and variable mass diffusion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical solution of a transient natural convection flow past a semi-infinite inclined plate under the combined buoyancy effects of heat and mass transfer along with chemical reaction is presented herewith. The governing boundary layer equations for the above flow problem for a first order homogeneous chemical reaction are set up and non-dimensionalised. An implicit finite difference method is employed to solve the unsteady, nonlinear, integro and coupled partial differential equation. Numerical results are presented for various parameters occurring in the problem. The unsteady velocity, temperature and concentration profiles, local and average skin friction, Nusselt number and Sherwood number are studied for both a generative and destructive reaction.
Rocznik
Strony
905--922
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
  • Department of Mathematics, Dr. Ambedkar Govt. Arts College, Chennai 600 039, Tamil Nadu, India
autor
  • Department of Mathematics, Dr. Ambedkar Govt. Arts College, Chennai 600 039, Tamil Nadu, India
Bibliografia
  • [1] Somers E.V. (1956): Theoretical considerations of combined thermal and mass transfer from a vertical flat plate. – J. Appl. Mech., vol.23, pp.295-301.
  • [2] Mathers W.G., Madden A.J. and Piret E.L. (1957): Simultaneous heat and mass transfer in free convection. – Ind. Engng. Chem., vol.49, pp.961-968.
  • [3] Wilcox W.R. (1961): Simultaneous heat and mass transfer in free convection. – Chem. Engng. Sci., vol.13, pp.113-119.
  • [4] Gebhart B. and Pera L. (1971): The nature of vertical natural convection flows resulting from combined buoyancy effects of thermal and mass diffusion. – Int. J. Heat Mass Trans., vol.14, pp.2025-2050.
  • [5] Callahan G.D. and Marner W.J. (1970): Transient free convection with mass transfer on an isothermal vertical flat plate. – Int. J. Heat Mass Trans., vol.19, pp.165-174.
  • [6] Ekanbavannan K. and Ganesan P. (1995): Finite difference analysis of unsteady natural convection along an inclined plate with variable surface temperature and mass diffusion. – Heat and Mass Transfer, vol.31, pp.17-24.
  • [7] Chambre P.L. and Young J.D. (1958): On the diffusion of a chemically reactive species in laminar boundary layer flow. – Physics of Fluids, vol.1, pp.48-54.
  • [8] Das U.N., Deka R.K. and Soundalgekar V.M. (1994): Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction. – Engineering Research, vol.60, pp.284-287.
  • [9] Das U.N., Deka R.K. and Soundalgekar V.M. (1994): Effects of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction. – Engineering Research, vol.60, pp.284-287.
  • [10] Muthucumaraswamy R. and Ganesan P. (2000): On impulsive motion of a vertical plate with heat flux and diffusion of chemically reactive species. – Forsch. Ingenieruw, vol.66, pp.17-23.
  • [11] Muthucumaraswamy R. and Ganesan P. (2002): Diffusion and first order chemical reaction on impulsively started infinite vertical plate with variable temperature. – Int. J. Thermal Sci., vol.41, pp.475-479.
  • [12] Anjali Devi S.P. and Kandsamy R. (2003): Effects of chemical reaction, heat and mass transfer on non-linear MHD flow over an accelerating surface with heat source and thermal stratification in the presence of suction or injection. – Comm. Numer. Methods Engg., vol.1, pp.513-520.
  • [13] Muthucumaraswamy R. and Kulandaivel T. (2003): Chemical reaction effects on moving infinite vertical plate with uniform heat flux and variable mass diffusion. – Forsch, Ingenieruw, vol.68, pp.101-104.
  • [14] Loganathan P., Kulandaivel T. and Muthucumaraswamy R. (2008): First order chemical reaction on moving semi-infinite vertical plate in the presence of optically thin gray gas. – Int. J. Appl. Math. Mech., vol.4, No.5, pp.26-41.
  • [15] Carnahan B., Luther H.A. and Wilkes J.O. (1969): Applied Numerical Mehods. – New York: John Wiley and Sons.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35dcd109-09d8-4f57-ba12-6354ba68e692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.