Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Aluminium AA5083 is commonly utilised in constructing ship hull shells, which are welded with aluminium AA6063 to act as stiffeners. However, the joints often suffer structural damage, such as longitudinal and transverse cracks in the dissimilar weld area, particularly in the Heat-Affected Zone (HAZ) of AA6063, which includes frames, brackets, and collars. To enhance the mechanical properties of AA6063, T6 heat treatment is commonly employed. The given study investigates the impact of temperature in artificial ageing during the T6 heat treatment on the microstructure and mechanical properties of the dissimilar materials welding between AA5083 and AA6063. Design/methodology/approach: The T6 heat treatment variations involve a solution treatment at 540°C for 6 hours, followed by quenching and artificial ageing at temperatures of 158°C, 200°C, and 230°C for 6 hours, followed by air cooling. The T6 heat treatment variations involve a solution treatment at 540°C for 6 hours, followed by quenching and artificial ageing at temperatures of 158°C, 200°C, and 230°C for 6 hours, followed by air. The weld joints were visually inspected and examined using radiography, then characterised by microstructure investigation and tensile and impact tests. Findings: The study's findings reveal that the T6 heat treatment significantly improves the mechanical properties of AA6063. However, the T6 heat treatment does not notably affect the mechanical properties of AA5083, the fusion line and the weld metal area. Among the artificial ageing temperature variations, the highest mechanical properties are achieved at 200°C, while the lowest mechanical properties are observed at 230°C. Research limitations/implications: Aluminium AA5083 is commonly utilised in constructing ship hull shells, which are welded with aluminium AA6063 to act as stiffeners. However, the joints often suffer structural damage, such as longitudinal and transverse cracks in the dissimilar weld area, particularly in the Heat-Affected Zone (HAZ) of AA6063, which includes frames, brackets, and collars. The paper focused on the influence of artificial ageing temperature in T6 heat treatment on the microstructure and mechanical properties of the dissimilar metals welding between AA5083 and AA6063. Originality/value: The optimum artificial ageing temperature in T6 heat treatment for the dissimilar metals welding between AA5083 and AA6063 was 200°C. The method can be applied in ship structures where AA5083 is typically utilised for constructing the hull shells, while AA6063 is employed as stiffeners.
Wydawca
Rocznik
Tom
Strony
72--85
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
- Mechanical Engineering Department, Sebelas Maret University (UNS), Surakarta, Indonesia
autor
- Mechanical Engineering Department, Sebelas Maret University (UNS), Surakarta, Indonesia
autor
- Mechanical Engineering Department, Muhammadiyah University Surabaya, Surabaya, Indonesia
autor
- School of Mechanical Engineering, University of Technology Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia
autor
- Mechanical Engineering Department, Sebelas Maret University (UNS), Surakarta, Indonesia
Bibliografia
- 1. A. Yürük, B. Çevik, N. Kahraman, Analysis of mechanical and microstructural properties of gas metal arc welded dissimilar aluminum alloys (AA5754/ AA6013), Materials Chemistry and Physics 273 (2021) 125117. DOI: https://doi.org/10.1016/j.matchemphys.2021.125117
- 2. H. Pratikno, Aging Treatment to Increase the Erosion-Corrosion Resistance of AA6063 Alloys for Marine Application, Procedia Earth and Planetary Science 14 (2015) 41-46. DOI: https://doi.org/10.1016/j.proeps.2015.07.083
- 3. A. Vinoth Jebaraj, K.V.V. Aditya, T. Sampath Kumar, L. Ajaykumar, C.R. Deepak, Mechanical and corrosion behaviour of aluminum alloy 5083 and its weldment for marine applications, Materials Today: Proceedings 22/4 (2020) 1470-1478. DOI: https://doi.org/10.1016/j.matpr.2020.01.505
- 4. J.S. de Andrade, M.R.S. Vieira, S.H. Oliveira, S.K. de Melo Santos, S.L. Urtiga Filho, Study of microbiologically induced corrosion of 5052 aluminum alloy by sulfate-reducing bacteria in seawater, Materials Chemistry and Physics 241 (2020) 122296. DOI: https://doi.org/10.1016/j.matchemphys.2019.122296
- 5. E. Fracchia, F. Gobber, M. Rosso, About weldability and welding of Al alloys: case study and problem solving, Journal of Achievements in Materials and Manufacturing Engineering 85/2 (2017) 67-74. DOI: https://doi.org/10.5604/01.3001.0010.8036
- 6. H. Mehdi, R.S. Mishra, Mechanical properties and microstructure studies in Friction Stir Welding (FSW) joints of dissimilar alloy – a review, Journal of Achievements in Materials and Manufacturing Engineering 77/1 (2016) 31-40. DOI: https://doi.org/10.5604/17348412.1229666
- 7. A.A. Saleh, Joining of AA2014 and AA5059 dissimilar aluminium alloys by Friction Stir Welding, Journal of Achievements in Materials and Manufacturing Engineering 97/1 (2019) 15-20. DOI: https://doi.org/10.5604/01.3001.0013.7945
- 8. E. Korkmaz, A. Gülsöz, C. Meran, Investigations on the joint properties of the friction welding of aluminium alloy tube to tube plate using an external tool, Journal of Achievements in Materials and Manufacturing Engineering 81/2 (2017) 70-75. DOI: https://doi.org/10.5604/01.3001.0010.2040
- 9. Z. Huda, N.I. Taib, T. Zaharinie, Characterization of 2024-T3: An aerospace aluminum alloy, Materials Chemistry and Physics 113/2-3 (2009) 515-517. DOI: https://doi.org/10.1016/j.matchemphys.2008.09.050
- 10. L. Huang, X. Hua, D. Wu, Z. Jiang, F. Li, H. Wang, S. Shi, Microstructural characterization of 5083 aluminum alloy thick plates welded with GMAW and twin wire GMAW processes, International Journal of Advanced Manufacturing Technology 93 (2017) 1809-1817. DOI: https://doi.org/10.1007/s00170-017-0480-1
- 11. V. Manikandan, K. Mariselvam, R. Nekin Joshua, C. Ramesh, K. Arunprasath, Study on process parameters of Tungsten Inert gas welded aluminium alloy 5086 through mechanical characteristics, Materials Today: Proceedings 66/3 (2022) 683-689. DOI: https://doi.org/10.1016/j.matpr.2022.03.641
- 12. B. Cevik, B. Gülenç, The effect of welding speed on mechanical and microstructural properties of 5754 Al (AlMg3) alloy joined by laser welding, Materials Research Express 5/8 (2018) 086520. DOI: https://doi.org/10.1088/2053-1591/aad3b0
- 13. J.A. Muñoz, A. Komissarov, M. Avalos, R.E. Bolmaro, Heat treatment effect on an AA6063 alloy, Materials Letters 277 (2020) 128338. DOI: https://doi.org/10.1016/j.matlet.2020.128338
- 14. X. Meng, S. Yang, Y. Huang, J. Fang, J. Gu, Q. Xiong, C. Duan, Microstructure characterization and mechanism of fatigue crack propagation of 6082 aluminum alloy joints, Materials Chemistry and Physics 257 (2021) 123734. DOI: https://doi.org/10.1016/j.matchemphys.2020.123734
- 15. M. Pakdil, G. Çam, M. Koçak, S. Erim, Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy, Materials Science and Engineering A 528/24 (2011) 7350-7356. DOI: https://doi.org/10.1016/j.msea.2011.06.010
- 16. J. Liu, M.J. Tan, A.E.W. Jarfors, S.C.V. Lim, K.S. Fong, S. Castagne, Greener manufacturing: Superplastic-like forming, Journal of Physics: Conference Series 379 (2012) 012034. DOI: https://doi.org/10.1088/1742-6596/379/1/012034
- 17. M.A. Wahid, A.N. Siddiquee, Z.A. Khan, Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint, Marine Systems and Ocean Technology 15 (2020) 70-80. DOI: https://doi.org/10.1007/s40868-019-00069-w
- 18. S. Kumar, A.K. Srivastava, R.K. Singh, S.P. Dwivedi, Experimental study on hardness and fatigue behavior in joining of AA5083 and AA6063 by friction stir welding, Materials Today: Proceedings 25/4 (2020) 646-648. DOI: https://doi.org/10.1016/j.matpr.2019.07.535
- 19. R. Koganti, A. Elliott, M. Zaluzec, A. Caliskan, A. Joaquin, Influence of Heat Treatment on Gas Metal Arc Welded Aluminum 6063 Alloy for Automotive Aluminum Spaceframe Architectures, Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 15: Processing and Engineering Applications of Novel Materials, Boston, Massachusetts, USA, 2008, 63-68. DOI: https://doi.org/10.1115/IMECE2008-68495
- 20. B. Çevik, M. Koç, The effects of welding speed on the microstructure and mechanical properties of marine-grade aluminium (AA5754) alloy joined using MIG welding, Kovove Materialy/Metallic Materials 57/5 (2019) 307-316. DOI: https://doi.org/10.4149/km_2019_5_307
- 21. J.A. Vargas, J.E. Torres, J.A. Pacheco, R.J. Hernandez, Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints, Materials and Design (1980-2015) 52 (2013) 556-564. DOI: https://doi.org/10.1016/j.matdes.2013.05.081
- 22. R. Ahmad, M.A. Bakar, Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method, Materials and Design 32/10 (2011) 5120-5126. DOI: https://doi.org/10.1016/j.matdes.2011.06.007
- 23. A.K. Lakshminarayanan, V. Balasubramanian, K. Elangovan, Effect of welding processes on tensile properties of AA6061 aluminium alloy joints, International Journal of Advanced Manufacturing Technology 40 (2009) 286-296. DOI: https://doi.org/10.1007/s00170-007-1325-0
- 24. J. Qin, H. Nagaumi, C. Yu, F. Liu, Y. Li, L. Wang, Coarsening behavior of Mg2Si precipitates during post homogenization cooling process in Al-Mg-Si alloy, Journal of Alloys and Compounds 902 (2022) 162851. DOI: https://doi.org/10.1016/j.jallcom.2021.162851
- 25. S.M. Ashrafizadeh, A.R. Eivani, H.R. Jafarian, J. Zhou, Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatment, Materials Science and Engineering A 687 (2017) 54-62. DOI: https://doi.org/10.1016/j.msea.2017.01.024
- 26. H. Feng, Y. Chen, H. Yang, P. Yang, J. Zhang, B. Shu, Effects of Aging Treatment on the Mechanical Properties and Corrosion Resistance of an Al-Cu-Mg-Li Alloy, Materials Today: Communications 32 (2023) 105487. DOI: https://doi.org/10.1016/j.mtcomm.2023.105487
- 27. S. Doddapaneni, S. Sharma, G.M.C. Shankar, M. Shettar, A. Hegde, Effect of precipitation hardening treatment on hardness and tensile behaviour of stir cast LM4 hybrid composites through TEM and fractography analysis, Journal of Materials Research and Technology 23 (2023) 1584-1598. DOI: https://doi.org/10.1016/j.jmrt.2023.01.127
- 28. M. Thornton, L. Han, M. Shergold, Progress in NDT of resistance spot welding of aluminium using ultrasonic C-scan, NDT and E International 48 (2012) 30-38. DOI: https://doi.org/10.1016/j.ndteint.2012.02.005
- 29. L. Yenumula, R.V. Acharya, B.M. Lingade, A. Borgohain, N.K. Maheshwari, U. Kumar, P.T. Selvam, A. Dash, Radiographic evaluation of gas tungsten arc welded joints used in nuclear applications by X- and gamma-rays, NDT and E International 102 (2019) 144-152. DOI: https://doi.org/10.1016/j.ndteint.2018.11.017
- 30. O. Zahran, H. Kasban, M. El-Kordy, F.E.A. El-Samie, Automatic weld defect identification from radiographic images, NDT and E International 57 (2013) 26-35. DOI: https://doi.org/10.1016/j.ndteint.2012.11.005
- 31. Z. Li, C. Li, Y. Liu, L. Yu, Q. Guo, H. Li, Effect of heat treatment on microstructure and mechanical property of Al-10%Mg2Si alloy, Journal of Alloys and Compounds 663 (2016) 16-19. DOI: https://doi.org/10.1016/j.jallcom.2015.12.128
- 32. C. Chen, M. Gao, H. Mu, X. Zeng, Effect of kerf characteristics on weld porosity of laser cutting-welding of AA2219 aluminum alloy, Applied Surface Science 494 (2019) 1036-1043. DOI: https://doi.org/10.1016/j.apsusc.2019.07.259
- 33. I. Habibi, Triyono, N. Muhayat, A Review on Aluminum Arc Welding and It’s Problems, in: U. Sabino, F. Imaduddin, A. Prabowo (eds), Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials, Lecture Notes in Mechanical Engineering, Springer, Singapore, 819-826. DOI: https://doi.org/10.1007/978-981-15-4481-1_78
- 34. R.D. Ardika, T. Triyono, N. Muhayat, Triyono, A review porosity in aluminum welding, Procedia Structural Integrity 33 (2021) 171-180. DOI: https://doi.org/10.1016/j.prostr.2021.10.021
- 35. S. Li, P. Jiang, Y. Gao, M. Song, L. Shu, A penetration depth monitoring method for Al-Cu laser lap welding based on spectral signals, Journal of Materials Processing Technology 317 (2023) 117972. DOI: https://doi.org/10.1016/j.jmatprotec.2023.117972
- 36. L.F. Wang, J. Sun, X.L. Yu, Y. Shi, X.G Zhu, LY. Cheng, H.H. Liang, B. Yan, L.J. Guo, Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment, Materials Science and Engineering A 734 (2018) 299-310. DOI: https://doi.org/10.1016/j.msea.2018.07.103
- 37. A. Bahrami, A. Miroux, J. Sietsma, Modeling of strain hardening in the aluminum alloy AA606, Metallurgical and Materials Transactions A 44 (2013) 2409-2417. DOI: https://doi.org/10.1007/s11661-012-1594-6
- 38. R.P. Verma, K.N. Pandey, Y. Sharma, Effect of ER4043 and ER5356 filler wire on mechanical properties and microstructure of dissimilar aluminium alloys, 5083-O and 6061-T6 joint, welded by the metal inert gas welding, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229/6 (2015) 1021-1028. DOI: https://doi.org/10.1177/0954405414535771
- 39. R.P. Verma, K.N. Pandey, Multi-response optimization of process parameters of GMA welding of dissimilar AA 6061-T6 and AA 5083-O aluminium alloy for optimal mechanical properties, Materials Today: Proceedings 46/20 (2021) 10204-10210. DOI: https://doi.org/10.1016/j.matpr.2020.11.375
- 40. R.P. Verma, Study of mechanical properties of GMA welded dissimilar aluminium alloys of AA5083-O/AA6061-T6 at different welding torch directions, Materials Today: Proceedings 46/20 (2021) 10306-10309. DOI: https://doi.org/10.1016/j.matpr.2020.12.454
- 41. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, H.-E. Ekström, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metallurgical and Materials Transactions A 37 (2006) 1999-2006. DOI: https://doi.org/10.1007/s11661-006-0142-7
- 42. A. Hidayat, A. Junaidi, S. Mudiantoro, W. Winarto, Fracture toughness and microstructure of gas metal arc welded plates of aluminium alloy 5083 using different filler wires and heat inputs, IOP Conference Series: Materials Science and Engineering 924 (2020) 012017. DOI: https://doi.org/10.1088/1757-899X/924/1/012017
- 43. N. Li, W. Mao, X. Geng, R. Zhang, B. Yan, Microstructure, segregation and fracture behavior of 6061 aluminum alloy samples formed by semi-solid or traditional high pressure die casting, Materials Today: Communications 31 (2022) 103418. DOI: https://doi.org/10.1016/j.mtcomm.2022.103418
- 44. F. Zupanič, J. Klemenc, M. Steinacher, S. Glodež, Microstructure, mechanical properties and fatigue behaviour of a new high-strength aluminium alloy AA 6086, Journal of Alloys and Compounds 941 (2023) 168976. DOI: https://doi.org/10.1016/j.jallcom.2023.168976
- 45. L. Huang, C. Wu, X. Hua, S. Liu, Z. Jiang, F. Li, F. H. Wang, S. Shi, Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy, Journal of Manufacturing Processes 31 (2018) 514-522. DOI: https://doi.org/10.1016/j.jmapro.2017.12.010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35d54d92-e582-4934-9b9a-11f7855c71b3