PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An implementation of robotization for the chosen hot die forging process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the possibilities of introducing selected aspects and problems in the robotization of the workstation in the hot die forging process, the production of the yoke forging carried out on a crank press in a manual system. The implementation of the developed solution was performed to increase the production efficiency without lowering the quality and mechanical parameters of the produced forgings and with preserved durability of the forging instrumentation. The conducted investigations included numerous aspects of the whole process line, with a special consideration of the adjustment of the currently realized technology to the working conditions of the robots in reference to the ejector system ensuring proper collection and relocation of the forgings by the manipulator grippers in the consecutive operations. The conduct also included the selection and localization of the robots and the grippers solutions, as well as the changes in the tool construction aiming at adjusting it to the gripper pins as well as collecting the hot charge material from the heater. Implementing robotization into one of the most difficult production processes aimed at replacing the role of a human by transferring the competences from the operator of the die forging process onto a supervising person, where all the activities are realized automatically, thus eliminating the effect of the human factor on the quality of the manufactured product. Additionally, the robotization of the forging process brought a lot of tangible benefits, such as stability and repeatability of the process (reduction of reject rate), as well as increased efficiency and quality of the forgings.
Rocznik
Strony
art. no. e119
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Lukasiewicza Street 5, 50‑370 Wrocław, Poland
  • Kuznia Jawor, The Die Forging Company, Kuziennicza Street 4, 59‑400 Jawor, Poland
Bibliografia
  • 1. Szyndler R. The current state and trends in world and European forging. Metal Forming. 2006;17(3):57-53.
  • 2. Hawryluk M, Zwierzchowski M. Structural analysis of dies used for hot forging in terms of their durability. Eksploatacja Niezawodność Maintenance Reliabil. 2009;2:31-41.
  • 3. Gronostajski Z. The deformation processing map for control of microstructure in CuAl9•2Fe3 aluminium bronze. J Mater Process Technol. 2002;125-126:119-24.
  • 4. Chen S-C, Tung P-C. Trajectory planning for automated robotic deburring on an unknown contour. Int J Mach Tools Manuf. 2000;40(7):957-78.
  • 5. Mrzygłód B, et al. Durability analysis of forging tools after different variants of surface treatment using a decision-support system based on artificial neural networks. Arch Civ Mech Eng. 2018;18(4):1079-91.
  • 6. Hawryluk M, Ziemba J, Zwierzchowski M, Janik M. Analysis of a forging die wear by 3D reverse scanning combined with SEM and hardness tests. Wear. 2021;476:1-9.
  • 7. Chen S, Qin Y, Chen J, Choy CM. A forging method for reducing process steps in the forming of automotive fasteners. Int J Mech Sci. 2018;137:1-14. https://doi.org/10.1016/j.ijmecsci.2017.12.045.
  • 8. Sundari K, Nithyashri J, Kuzhaloli S, Subburaj J, Vijayakumar P, Hency S. Comparison analysis of IoT based industrial automation and improvement of different processes-review. Mater Today Proc. 2020;45(1):132-41. https://doi.org/10.1016/j.matpr.2020.11.338.
  • 9. Gronostajski Z, Hawryluk M, Kaszuba M, Niechajowicz A, Polak S, Walczak S, Jabłoński D. Die profile optimization for forging constant velocity joint casings. Arch Metall Mater. 2011;56(2):5518.
  • 10. Gao Z, Wanyama T, Singh I, Gadhrri A, Schmidt R. From industry 4.0 to robotics 4.0-a conceptual framework for collaborative and intelligent robotic systems. Proced Manuf. 2020;46:591-9. https://doi.org/10.1016/j.promfg.2020.03.085.
  • 11. Edward Kyle P. The closed die forging process. Whitefish: Literary Licensing LLC; 2013.
  • 12. Kost G. Automatyzacja i robotyzacja procesów produkcyjnych. Warszawa: Polskie Wydawnictwo Ekonomiczne; 2013.
  • 13. Honczarenko J. Roboty przemysłowe Budowa i zastosowanie. 2nd ed. Warszawa: Wydawnictwa Naukowo-Techniczne; 2010.
  • 14. Belchiora J, et al. Off-line compensation of the tool path deviations on robotic machining: Application to incremental sheet forming. Robot Comput Integrat Manuf. 2013;29(4):58-69.
  • 15. Arentoft M, Gronostajski Z, Niechajowicz A, Wanheim T. Physical, and mathematical modelling of extrusion processes. J Mater Process Technol. 2000;106:2-7.
  • 16. Mitchell G, Kramer A. Forging operations-machine forging, forging dies and special forging operations. Redditch: Read Books Ltd.; 2013.
  • 17. E. Parlament and Rada (2006) Dyrektywa 2006/42/WE Parlamentu Europejskiego i Rady z dnia 17 maja 2006 w sprawie maszyn, pp 24-86.
  • 18. Polak S, Kaczyński P, Gronostajski Z, Jaśkiewicz K, Krawczyk J, Skwarski M, Zwierzchowski M, Chorzępa W. Warm forming of 7075 aluminum alloys. Proced Eng. 2017;207:2399-404.
  • 19. Hawryluk M, Gronostajski Z, Kaszuba M, Polak S, Widomski P, Ziemba J, Smolik J. Application of selected surface engineering methods to improve the durability of tools used in precision forging. Int J Adv Manuf Technol. 2017;93(5-8):2183-200.
  • 20. Zdanowicz R. Robotization of manufacturing processes. Gliwice: Publishing House of the Silesian University of Technology; 2007.
  • 21. Yin G, et al. Robotics and computer-integrated manufacturing flexible punching system using industrial robots for automotive panels. Robot Comput Integr Manuf. 2017;52:92-9. https://doi.org/10.1016/j.rcim.2017.11.002.
  • 22. Gronostajski Z, Hawryluk M. The main aspects of precision forging. Arch Civ Mech Eng. 2006;8(2):39-55. https://doi.org/10.1016/S1644-9665(12)60192-7.
  • 23. Son C. Comparison of optimal motion planning algorithms for intelligent control of robotic part micro-assembly task. Int J Mach Tools Manuf. 2006;46(5):508-17.
  • 24. Fanuc. https://www.fanuc.eu/pl/pl/roboty.
  • 25. Kawasaki Robotics. http://www.kawasakirobotics.com/.
  • 26. Herdan F. Lasco-tradition, passion, vision. Coburg: Lasco Umformtechnik GmbH; 2013.
  • 27. Lasco: https://www.lasco.com/.
  • 28. International Federation of Robotics. https://ifr.org/.
  • 29. Robotics in Manufacturing. https://cerasis.com/robotics-in-manufacturing/.
  • 30. SMS-Group. https://www.sms-group.com/.
  • 31. Solnik W, Zajda Z. Industrial networks Profibus DP, ProfiNet, AS-i i EGD. Application examples. Warsaw: BTC Publishing House; 2018.
  • 32. Norma EN29409-1:1992 Roboty przemysłowe. Interfejsy mechaniczne. Interfejs kołowy (kształt A).
  • 33. Van Doren MJ, Slocum A. Design and implementation of a precision material handling robot control system. Int J Mach Tools Manuf. 1995;35(7):1003-14.
  • 34. Gronostajski Z, Niechajowicz A, Polak S. Prospects for the use of new generation steels of the AHSS type for collision energy absorbing components. Arch Metall Mater. 2010;55(1):221-30.
  • 35. Lopes T, et al. Balancing a robotic spot welding manufacturing line: an industrial case study. Eur J Oper Res. 2016;263(3):1033-48.
  • 36. Dumas C, et al. Joint stiffness identification of six-revolute industrial serial robots. Robot Comput Integrat Manuf. 2011;12(1):23-41.
  • 37. Butdee S, Thanomsin J. Robotic welding using fuzzy logic to predict penetration for an oil pipeline weldment. Mater Today Proc. 2019;26:2425-31. https://doi.org/10.1016/j.matpr.2020.02.517.
  • 38. Birmingham F, Jelinek J. Quick changeover simplified: the manager guide to improving profits with Smed. New York: Producitivity press; 2007.
  • 39. SmartSmith. https://www.ssforging.com/.
  • 40. Harrison CS. A review of automation in manufacturing illustrated by a case study on mixed-mode hot forging. Manuf Rev. 2014;1:15. https://doi.org/10.1051/mfreview/2014012.
  • 41. Barczyk J, Dogiel K. Zrobotyzowana obsługa pras. Pomiary Autom Robot. 2006;2:5-11.
  • 42. Anyang Hammer: https://www.anyanghammer.com/.
  • 43. Perryman Company: http://www.perrymanco.com/capabilities/forging.
  • 44. ABB. https://new.abb.com/pl.
  • 45. Tung PC, Wang SR, Hong FY. Application of MRAC theory for adaptive control of a constrained robot manipulator. Int J Mach Tools Manuf. 2000;40(14):2083-97.
  • 46. Swevers J, Verdonck W, Naumer B, Pieters S, Biber E. An experimental robot load identification method for industrial application. Int J Robot Res. 2002;21(8):701-12.
  • 47. Bauersachs L. Virtual commissioning. Lasco Upgrade. 2018;21(39):4-5.
  • 48. Fagor arrasate. https://fagorarrasate.com/.
  • 49. Kranjc M, Zupanic A, Miklavcic D, Jarm T. Numerical analysis and thermographic investigation of induction heating. Int J Heat Mass Transfer. 2010. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.030.
  • 50. Hawryluk M, Widomski P, Kaszuba M, Krawczyk J. Development of new preheating methods for hot forging tools based on industrial case studies and numerical modeling. Metallurg Math Trans A. 2020;51(9):4753-64. https://doi.org/10.1007/s11661-020-05893-z.
  • 51. Hawryluk M, Kaszuba M, Gronostajski Z, Sadowski P. Systems of supervision and analysis of industrial forging processes. Eksploatacja Niezawodność Maintenance Reliabil. 2016;18(3):315-24.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35d455d5-f5dc-45b7-b759-2753e9e3ddf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.