Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cyclic loading of superelastic NiTi shape memory alloy (SMA) causes forward and reverse austenite–martensіte transfor-mations, and also increases the volume of stabilized martensite. This appears in the change of stress-strain curve form, the decrease of dissipation energy, and increase of residual strain, that is, named transformation ratcheting. In real structures, the SMA components in most cases are under the action of variable amplitude loading. Therefore, it is obvious that the loading history will influence the functional fatigue. In the present work, the effect of stress ratio on the functional properties of superelastic NiTi shape memory alloy under variable amplitude loading sequence with two blocks was investigated. The studies were carried out under the uniaxial tension of cy-lindrical specimens under load-full unload and load-part unload. The change of residual strain, strain range, dissipation, and cumulative dissipation energy density of NiTi alloy related to load sequences are discussed. Under both stress ratios, the residual strain in NiTi alloy is increased depending on the number of loading cycles on the high loading block that is similar to the tests at constant stress or strain amplitude. An unusual effect of NiTi alloy residual strain reduction with the number cycles is found at a lower block loading. There was revealed the effect of residual strain reduction of NiTi alloy on the number of loading cycles on the lower amplitude block. The amount of decrement of the residual strain during a low loading block is approximately equal to the reversible part of the residual strain due to the stabilized martensite. The decrease of the residual strain during the low loading block is approximately equal to the reversible part of residual strain due to the stabilized martensite. A good correlation of the effective Young’s modulus for both load blocks with residual strain, which is a measure of the volume of irreversible martensite, is observed.
Czasopismo
Rocznik
Tom
Strony
154--160
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Department of Structural Mechanics, Ternopil Ivan Puluj National Technical University, Ruska str. 56, 46001 Ternopil, Ukraine
autor
- Department of Structural Mechanics, Ternopil Ivan Puluj National Technical University, Ruska str. 56, 46001 Ternopil, Ukraine
autor
- Université Clermont Auvergne, SIGMA Clermont (ex-IFMA, French Institute of Advanced Mechanics), Institut Pascal, BP 10448, F-63000 Clermont-Ferrand, France, CNRS, UMR 6602, IP, F-63178 Aubière, France
autor
- Department of Structural Mechanics, Ternopil Ivan Puluj National Technical University, Ruska str. 56, 46001 Ternopil, Ukraine
autor
Bibliografia
- 1. Araya R., Marivil M., Mir C., Moroni O., Sepúlveda A. (2008), Temperature and grain size effects on the behavior of CuAlBe SMA wires under cyclic loading, Materials Science and Engineering: A, 496(1-2), 209–213.
- 2. ASTM F2516-14 (2014), Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.
- 3. Auricchio F., Marfia S., Sacco E. (2003) Modelling of SMA materials: training and two way memory effect, Comput. Struct. 81, 2301–2317.
- 4. Bubulinca C., Balandraud X., Grédiac M., Stanciu S., Abrudeanu M. (2014), Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation, Journal of Materials Science, 49, 701–709.
- 5. Carpinteri A., Di Cocco, Fortese G., Iacoviello F., Natali S., Ronchei C., Scorza D., Vantadori S., Zanichelli A. (2018), mechanical behaviour and phase transition mechanisms of a shape memory alloy by means of a novel analytical model, Acta Mechanica et Automatica, Vol. 12, No. 2, 105–108.
- 6. Duerig T., Stoeckel J., Johnson D. (2002) SMA — smart materials for medical applications, Proceedings of SPIE 4763, Bellingham, WA, 7–15.
- 7. Hua P., Chu K., Ren F., Sun Q. (2020), Cyclic phase transformation behavior of nanocrystalline NiTi at microscale, Acta Materialia, 185, 507–517.
- 8. Iasnii V., Junga R. (2018), Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory, Materials Science, 54(3), 406–411.
- 9. Iasnii V., Yasniy P. (2019a), Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study, Acta mechanica et automatica, 13(2), 95–100.
- 10. Iasnii V., Yasniy P., Lapusta Y., Shnitsar T. (2018), Experimental study of pseudoelastic NiTi alloy under cyclic loading, Scientific Journal of TNTU, 92(4), 7–12.
- 11. Iasnii, V., Yasniy P. (2019b), Influence of stress ratio on functional fatigue of pseudoelastic NiTi alloy, Procedia Structural Integrity, 16, 67–72.
- 12. Kang G. (2013), Advances in transformation ratcheting and ratcheting-fatigue interaction of NiTi shape memory alloy, Acta Mechanica Solida Sinica, 26(3), 221–236.
- 13. Kecik K. (2015), Application of shape memory alloy in harvesto-absorber system, Acta mechanica et automatica, 9(3), 155–160.
- 14. Mahtabi M.J., Shamsaei N., Rutherford B. (2015), Mean strain effects on the fatigue behavior of superelastic Nitinol alloys: An experimental investigation, Procedia Engineering, 133, 646–654.
- 15. Mahtabi M.J., Stone T.W., Shamsaei N. (2018), Load sequence effects and variable amplitude fatigue of superelastic NiTi, International Journal of Mechanical Sciences, 148, 307–315.
- 16. Maletta C., Sgambitterra E., Furgiuele F., Casati R., Tuissi R. (2014), Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue, 66, 78–85.
- 17. Nematollahi M., Baghbaderani K.S., Amerinatanzi A., Zamanian H., Elahinia M. (2019), Application of NiTi in Assistive and Rehabilitation Devices: A Review, Bioengineering, 6(2), 37.
- 18. Pecora R., Dimino I. (2015), SMA for Aeronautics, Shape Memory Alloy Engineering, Chapter 10, 275–304.
- 19. Pelton, A.R., Schroeder V., Mitchell M.R., Gong Xiao-Yan, Barney M., Robertson S.W. (2008), Fatigue and durability of Nitinol stents, Journal of the Mechanical Behavior of Biomedical Materials, 1 (2), 153–164.
- 20. Scirè Mammano G., Dragoni E. (2012), Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints, Frattura ed Integrità Strutturale, 7(23), 25–33.
- 21. Soul H., Yawny A. (2015), Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires, Smart Materials and Structures, 24(7), 075005.
- 22. Soul H., Yawny A. (2017), Effect of Variable Amplitude Blocks’ Ordering on the Functional Fatigue of Superelastic NiTi Wires, Shap. Mem. Superelasticity, 3, 431–442.
- 23. Wagner M.F., Nayan N., Ramamurty U. (2008), Healing of fatigue damage in NiTi shape memory alloys, Journal of Physics D: Applied Physics, 41(18), 185408.
- 24. Yasniy P., Hlado V., Hutsaylyuk V., Vuherer T. (2005), Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue & Fracture of Engineering Materials & Structures, 28(4), 391–397.
- 25. Zeng Z., Oliveira J.P., Ao S. Et al. (2020), Fabrication and characterization of a novel bionic manipulator using a laser processed NiTi shape memory alloy, Optics & Laser Technology, 122.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35d41d0d-37a0-438c-9b46-cd041b1bd45a