PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a Lever Hydroelectric Power Plant – in the Structural Aspect with a Strength Analysis of the Selected Segment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents examples of the use of complex sheet metal in everyday life and the course of modeling a sheet bent simultaneously in two planes. The element selected to describe the modelling process is a fragment of the side wall of a lever hydroelectric power plant that operates on the Bystrzyca River in Lublin. The shape of the element is conditioned by the need to achieve a gentle change in the cross-section of the water stream during the flow between the steering system and the outflow area. The segment through which the water flows is clearly lower and wider than the other modules of the power plant, which is due to the average water level in the Bystrzyca River. Such a shape is necessary because the inflow and outflow parts of the power plant must be submerged under water all the time. This is due to the principle of operation of the power plant, which works by obtaining a vacuum created by pumping air from the inside. The article also presents the results of the strength analysis, which was performed for the segment exposed to the highest loads. The analysis and the entire design were performed in Autodesk Inventor, and the results obtained were as expected and even in the most critical places no values were reached that would require changes to the design. The Von Mises stresses reached a maximum of 193.4MPa, the largest displacement was 1.7mm, and the minimum safety factor was 1.07, and although it was slightly higher than the minimum allowable value, it occurred in the contact area of the 4 sheets, i.e. in the place where the weld was laid, which made it the most acceptable value.
Twórcy
  • Department of Informatization and Robotization of Production, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, Poland
  • Department of Informatization and Robotization of Production, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, Poland
Bibliografia
  • 1. Tondini F., Basso A., Arinbjarnar U., Nielsen C.V. The Performance of 3D printed polymer tools in sheet metal forming, Advances in Metals 2021; 11(8).
  • 2. Bradac J., Sobotka J. Influence of draw-beads geometry on the surface quality of zn-mg coating, Advances in Manufacturing Technology 2021; 13(6): 758–768.
  • 3. https://autokult.pl/materialy-konstrukcyjne-w--nowoczesnych-pojazdach samochodowychcz--1,6808815326357121a [23.01.2024r.]
  • 4. Tan H., Liu C., Chen C., Wang J. An intelligent approach to design three-dimensional aircraft sheet metal part model for manufacture. In: Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013), Castellon, Spain 2013, 83–88.
  • 5. MacDonald B.J. A computational and experimental analysis of high Energy impact to sheet metal aircraft structures, Advances in Journal of Materials processing technology 2002; 124: 92–98.
  • 6. Niezgoda T., Małachowski J., Budzyński A., Kościanowski S. Model 3D MCAD lekkiego samolotu sportowego, jako źródło geometrii dla analizy wytrzymałościowej MES obiektu. In: IX Krajowa Konferencja Naukowo-Techniczna: Programy MES w Komputerowym Wspomaganiu Projektowania i Wytwarzania, Giżycko, Poland 2005.
  • 7. Wang S., Dai J., Wang J., Li R., Wang J., Xu Z. Numerical Calculation of High-Strength-Steel Saddle
  • Plate Forming Suitable for Lightweight Construction of Ships. Advances in Materials 2023; 16(10).
  • 8. Hwang S.Y., Lee J.H., Yang Y.S., Yoo M.J. Springback adjustment for multi-point forming of thick plates in shipbuilding. Advances in Computer-Aided Design 2010; 42(11): 1001–1012.
  • 9. Abedini, S., Schäfer, S., Bäcker, F., Ludwig, C. Geometric figures and potential component families of metal sheets for the use in architecture. In Building Skins Conference, Graz, Austria 2012.
  • 10. Seitzberger, M., Nedelik, R., Ruthmeier, A., Grausgruber, T. CAE-based concept development for lightweight design of railway vehicles. Advances in: Lightweight Design worldwide 2017; 10: 32–37.
  • 11. Gujarathi, M.P., Patil, M.O., Mhatre, M.T., Bokde, M.P. Automatic pneumatic sheet metal feeding and cutting machine. Advances in IJraset 2021; 9(11): 150–165.
  • 12. Carbogno, A., Stawowiak, M., Jasiński, T. Problematyka górniczego wyciągu szybowego szybu 2.1 zakładu górniczego LW” Bogdanka” SA. Advances in: Napędy i Sterowanie 2018; 20: 44–55.
  • 13. Michałek M. Koncepcja rozwiązań konstrukcyjnych zabezpieczenia wyrobisk podszybia adaptowanego na potrzeby podziemnego zbiornika. Advances in: Górnictwo i Geoinżynieria 2007; 3(1): 429–438.
  • 14. Andrejiová, M., Grinčová, A. The experimental research of the conveyor belts damage used in mining industry. Advances in Acta Montanistica Slovaca 2016; 21(3): 180–190.
  • 15. 15. Awuah-Offei, K., Checkel, D., Askari-Nasab, H. Evaluation of belt conveyor and truck haulage systems in an open pit mine using life cycle assessment. Advances in CIM Magazine 2009; 4(5).
  • 16. Demir, N., Sucuoğlu, H. S., Böğrekci, İ., Demircioğlu, P. Structural & dynamic analyses and simulation of mobile transportation robot. Advances in International Journal of 3D Printing Technologies and Digital Industry 2021; 5(3): 587–595.
  • 17. Coetzee, S., Swart, H., Bosscha, P., Oosthuizen, D. Design of an industrial all-terrain robot platform lessons learned in the design of a robotic mine safety platform for South African gold mines. In 5th Robotics and Mechatronics Conference of South Africa, Johannesberg, South Africa 2012: 1–4.
  • 18. Hingu, P.R., Panchal, D.N. Industrial robot and automation. Advances in The International Journal of Engineering and Science (IJES) 2021; 10(2): 15–23.
  • 19. Prabhakaran, S., Aravinth Kumar, T., Adhik Namo, V. Design and analysis of autonomous mobile robot. Advances in Nveo-Natural Volatiles & Essential Oils Journal| NVEO 2021; 8: 3020–3030.
  • 20. Krishnamoorthy, K. Design and development of a lead screw gripper for robotic application. Advances in Mechatronics and Applications: An International Journal (MECHATROJ) 2019; 2(1)
  • 21. Ślipek, Z., Frączek, J., Cieślikowski, B. Specyfikacja ogólnych wymagań projektowych dla maszyn rolniczych. Cz. II. Maszyny do zbioru. Advances in Inżynieria Rolnicza 2008; 12: 291–298.
  • 22. Ishibashi, T. Hironaka S. Araki N. Development of high reliability rolling bearings and drive shafts for agricultural and construction machinery. Advances in JTEKT Engineering Journal 2015; 1012E: 62–69.
  • 23. Gwizdal P., Gola A., Świć A. Projekt i wdrożenie elektrowni wodnej lewarowej na rzece Bystrzyca w Lublinie, Advances in Polskie Wydawnictwo Ekonomiczne 2022: 141–149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35d14ff2-235b-4b1e-b064-61adc5a558e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.