PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of fly ash on flexural capacity concrete beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the flexural response of reinforced geopolymer concrete (RGPC) beam. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beam. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental test and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly-ash based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.
Twórcy
autor
  • Department of Civil Engineering, Faculty of Engineering, University of Lorestan, Iran
autor
  • Department of Civil Engineering, Islamic Azad University of Lorestan, Iran
autor
  • Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Civil Engineering, Faculty of Engineering, University of Lorestan, Iran
  • Department of Civil Engineering, Islamic Azad University of Yazd, Iran
Bibliografia
  • 1. 1. McCaffrey R. Climate Change and the Cement Industry. Global Cement and Lime Magazine. 2002; 15-9.
  • 2. Davidovits J. Global Warming Impact on the Cement and Aggregates Industries. World Resource Review 1999; 46: 263-78.
  • 3. Davidovits J. Synthesis of new high temperature geopolymers for reinforced plastics/composites. SPE PACTEC 79, Society of Plastic Engineers 1979; 151–54.
  • 4. Davidovits J. Ancient and modern concretes: what is the real difference. Concr. Int.1987; 12, 23–5.
  • 5. Davidovits J. Geopolymer chemistry and Applications, 3rd ed. France: Institut Geopolymer; 2011.
  • 6. Duxson P. Effect of Alkali cations on Aluminum incorporation in Geopolymeric gels. Ind. Eng. Chem. Res. 2005; 44: 4-832.
  • 7. Ganesan N, Abraham R, Deepa RS, Sasi D. Stress-strain behavior of confined Geopolymer concrete. Cons. Build. Mater. 2014; 73, 236-331.
  • 8. Brooke NJ, Keyte LM, South W, Megget LM, Ingham JM. Seismic Performance of ‘Green Concrete’ Interior Beam-Column Joints. In Proceeding of Australian Structural Engineering Conference (ASEC) 2005, Newcastle.
  • 9. Uma K, Anuradha R, Venkatasubramani R. Experimental investigation and analytical modeling of reinforced geopolymer concrete beam. Int. J Civ. Struct. Eng. 2012;3.
  • 10. Sumajouw MDJ, Rangan BV. Low calcium fly ash-based geopolymer concrete: Reinforced beams and columns. Research report GC-3 2006, Faculty of Engineering, Curtin University of Technology, Perth, Australia.
  • 11. ASTM C469, Standard Test Method for Static Modulus of Elasticity and Poison’s Ratio of Concrete in Compression.
  • 12. Abaqus v. 6. 10. (2010) Dassault Systemes Simulia Corp. Software: Windows 7 OS.
  • 13. Hosseini M, Amiri A.M, Beiranvand P. Numerical analysis of reinforced concrete beams containing bending and shear opening and strengthened with FRP sheet. Engineering Solid Mechanics. 2016
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35cceff3-0ee3-439d-a865-7d0c74e6a040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.