Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wydajna kwadratura dla całkowania szybko oscylujących funkcji optyki rentgenowskiej
Języki publikacji
Abstrakty
The study concerns the determination of quadrature for the integral solution of the paraxial wave equation. The difficulty in computation of the integral is associated with the rapid change of the integrand phase. The developed quadrature takes into account the fast oscillating character of the integrand. The presented method is an alternative to the commonly used methods based on the use of the Fourier transform. The determination of the quadrature is discussed on the example of the integral arisen in the theory of propagation and focusing on hard X-rays waves. Due to the generality of the presented quadrature, it may also be applied to issues related to standard optics and acoustics.
Praca jest poświęcona wyznaczaniu kwadratury dla rozwiązań całkowych równania przewodnictwa cieplnego z zespolonym potencjałem. Trudność w wyznaczaniu tego typu całek jest związana z szybkimi oscylacjami funkcji całkowanej. Prezentowana metoda jest alternatywa dla powszechnie stosowanej metody opartej o zastosowanie transformacji Fouriera. Sprecyzowanie kwadratury jest przedyskutowane na przykładzie całek występujących przy badaniu teorii propagacji i skupiania promieniowania rentgenowskiego. Dzięki ogólności prezentowanej kwadratury, może być ona także zastosowana do zagadnień związanych z optyką i akustyką.
Wydawca
Czasopismo
Rocznik
Tom
Strony
253--267
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
- Baltic I. Kant Federal University, Kaliningrad, Russia
autor
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, 11/12 G. Narutowicza str., 80-233 Gdańsk, Poland
Bibliografia
- [1] T. L. Beach. Initial phase and free-particle wave packet evolution. American Journal of Physics. 2008. Vol.77, No 6, pp. 538–545. doi: 10.1119/1.3089531.
- [2] C.W. Clenshaw, A.R. Curtis. A method for numerical integration on an automatic computer. Numer. Math. 1960. 2. pp.197–205. doi: 10.1007/BF01386223 Zbl 0093.14006 MR 0117885 131456.
- [3] P.M. Duffieux. The Fourier transform and its applications to optics. 1983. Wiley. New York.
- [4] G.A. Evans, J.R. Webster. A high order, progressive method for the evaluation of irregular oscillatory integrals. Appl. Numer. Math. 1997. 23. pp. 205–218. doi: 10.1016/S1068-9274(96)00058-X.
- [5] L.N.G. Filon. On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. Edinburgh. 1928. 49. pp. 38–47.
- [6] J. Goodman. Introduction to Fourier Optics (3-rd ed.). Roberts and Co Publishers 2005.
- [7] D. Huybrechs, S. Vandewalle. On the evaluation of highly oscillatory integrals by analysis continuation, SIAM J. Numer. Math. 2006. 44. pp. 1026–1048. doi: 10.1137/050636814.
- [8] A. Iserles. On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 2004. 24. pp. 365–391. doi: 10.1093/imanum/24.3.365.
- [9] A. Iserles. On the numerical quadrature of highly-oscillating integrals II: irregular oscillators. IMA J. Numer. Anal. 2005. 25. pp. 25–44. doi: 10.1093/imanum/drh022.
- [10] A. Iserles, S.P. Norsett. On quadrature methods for highly oscillatory integrals and their implementation. BIT Numerical Mathematics, 2004. 44. pp. 755–772. MR 2219027.
- [11] A. Iserles, S.P. Norsett. Efficient quadrature of highly-oscillatory integrals using derivatives. Proc. Roy. Soc. A, 2005. 461. pp. 1383–1399. doi: 10.1098/rspa.2004.1401.
- [12] V. Kohn, I. Snigireva, A. Snigirev. Diffraction theory of imaging with X-ray compound refractive lens. Optics Communications. 2003. 216. 247-260. doi: 10.1016/S0030-4018(02)02285-X.
- [13] V. Kohn. Focusing femtosecond X-ray free-electron laser pulses by refractive lenses. J. Synchrotron. Rad. 2011. 19. pp. 84-92. doi: 10.1107/S0909049511045778.
- [14] V.G. Kohn. An exact theory of imaging with parabolic continuously refractive X-ray lens. Journal of experimental and theoretical Physics. 2003. Vol. 97. No 1. pp. 204-215.
- [15] V.G. Kohn. Semi-analytical theory of focusing of synchrotron radiation by any system of parabolic refracting lenses and a nano-focusing problem. A surface. X-ray, synchrotron and neutron researches. 2009. 5. pp. 32-39. doi: 10.1134/S1027451009030057.
- [16] V.G. Kohn, M.A. Orlov. Computer simulations of the Zernike phase contrast in hard X-ray radiation using refractive lenses and zone plates. Journal of Surface Investigations. X-ray, Synchrotron and Neutron Techniques. 2010. Vol.4, No 6, pp. 941-946. doi: 10.1134/S102745101006011X.
- [17] V.G. Kohn, M.A. Orlov. Computer analyses of two-dimensional images in the Zernike phase contrast method for hard X-rays. Crystallography Reports. 2012. Vol.57. No five. pp. 676-681. doi: 10.1134/S1063774512050082.
- [18] B. Lengeler, C. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, M. Drakopoulos. Imaging by parabolic refractive lenses in the hard X-ray range. J. Synchrotron Rad. 1999. pp. 1153-1167.
- [19] D. Levin. Procedures for computing one-and-two-dimensional integrals of functions with rapid irregular oscillations. Math.Comput. 1982. 38. pp. 531–538. doi: 10.2307/2007287.
- [20] D. Levin. Fast integration of rapidly oscillatory functions. J. Comp. Appl. Math. 1996. v. 67. 1. pp. 95–101. doi: 10.1016/0377-0427(94)00118-9.
- [21] D. Levin. Analysis of a collocation method for integrating rapidly oscillatory functions. J. Comput. Appl. Math., 1997. 78. pp. 131–138. doi: 10.1016/S0377-0427(96)00137-9.
- [22] I.M. Longman A method for numerical evaluation of finite integrals of oscillatory functions. Math. Comput., 14. 1960. pp. 53–59. doi: 10.2307/2002984.
- [23] S. Olver, Moment-free numerical integration of highly oscillatory functions, IMA J. Numer. Anal. 2006. 26. pp. 213–227. doi: 10.1017/S0956792507007012.
- [24] T. M. Pritchett. Spectral solution of the Helmholtz and paraxial wave equations and classical diffraction formula. 2004. Army Research Laboratory. Adelphi. MD 20783-1197. ARL-TR-3179. 28 pp.
- [25] C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn. Phase-contrast microtomography with coherent high-energy synchrotron X-rays. Appl. Phys. Lett. 1996. 69(13), pp. 1826-1828. doi: 10.1063/1.117446.
- [26] C. Scott. Introduction to optics and optical imaging. Wiley. 1998.
- [27] A. Snigirev, V. Ęîhn, I. Snigireva, B. Lengeler. A compound refractive lens for focusing high-energy X-rays. Nature. 1996. 384, p. 49-51. doi: 10.1038/384049a0.
- [28] A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. Di Michiel, G. Vaughan, V. Kohn, S. Kuznetsov. High energy X-ray nanofocusing by silicon planar lenses. Journal of Physics: Conference Series. 2009. 186. pp. 1-3. doi: 10.1088/1742-6596/186/1/012072.
- [29] A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov. On the possibilities of X-rays phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 1995. 66 (12) pp. 5486-5492. doi: 10.1063/1.1146073.
- [30] E. Stein. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. 1993. Princeton University Press. Princeton, NJ. Zbl 0821.42001.
- [31] H.J. Stetter. Numerical approximation of Fourier-transforms. Numer. Math. 1966. 8. pp. 235–249. doi: 10.1007/BF02162560 Zbl 0163.39503.
- [32] R. Wilson. Fourier series and optical transform techniques in contemporary optics. Wiley. 1995.
- [33] S. Xiang, W. Gui, P. Mo, Numerical quadrature for Bessel transformations. Appl. Numer. Math. 2008. 58. pp. 1247-1261. doi: 10.1016/j.apnum.2007.07.002.
- [34] S. Xiang. On the Filon and Levin methods for highly oscillatory integral ∫ba f (x) eiωg(x) dx. J. Comp. Appl. Math. 2007. v. 208. 2. pp. 434–439. doi: 10.1016/j.cam.2006.10.006.
- [35] The paraxial wave equation. Available at: http://en.wikipedia.org/wiki/Fourier optics.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35bd0677-8e11-4777-842a-2186041fe9dc