PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Systemy uwalniania leków oparte na nanowłóknach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Drug delivery systems based on nanofibers
Języki publikacji
PL
Abstrakty
PL
W pracy podjęto się zadania stworzenia systemu uwalniania leków opartego na zastosowaniu biodegradowalnych materiałów polimerowych wytworzonych z nanowłókien otrzymywanych metodą elektroprzędzenia. Bezpośrednim celem tej pracy było stworzenie aktywnego opatrunku wspomagającego operacje neurochirurgiczne. Praca zawiera eksperymentalną i numeryczną analizę procesu uwalniania i transportu leku do typowego płynu buforowego oraz analogu tkanki mającą na celu znalezienie optymalnych warunków kontrolowania w czasie i przestrzeni rozkładu stężenia leku. Uwalnianie leku w zaproponowanym modelu matematycznym opisano za pomocą równań adsorpcji-desorpcji, zaś transport w porowatym materiale z wykorzystaniem równania dyfuzji. Przedstawiona analiza parametrów materiałów z nanowłókien mających wpływ na szybkość uwalniania leków, opis matematyczny procesu lokalnego uwalniania leków z materiałów polimerowych, jak również transportu substancji aktywnych w organizmie w szczególności w tkance mózgowej, pozwoliły na zbudowanie modelu numerycznego umożliwiającego parametryczną ocenę wpływu czynników geometrycznych, struktury materiału, metody enkapsulacji leku we włóknach, jak i własności nanowłókien na profile uwalniania leków. W rezultacie przeprowadzonych badań stworzono materiały do operacji chirurgicznych oparte na trzech lekach neuroprotektycznych: lipofilowego alfa-tokoferolu, oraz hydrofilowych czynników wzrostu NGF (Nerve Growth Factor) i BDNF (Brain Derived Neurotrophic Factor). Jako nośników leków użyto biodegradowalnych i biokompatybilnych polimerów poli(L-laktydu-co-kaprolaktonu) PLC, poli(L-laktydu) PLLA, poli(DL-laktydu-co-glikolidu) PDLG. Przeprowadzone we współpracy z Instytutem Medycyny Doświadczalnej i Klinicznej PAN operacje neurochirurgiczne wykonane na modelu zwierzęcym potwierdziły pozytywny wpływ wytworzonych z nanowłókien materiałów na proces regeneracji tkanki nerwowej, zapobiegając jednocześnie szkodliwemu dla tego procesu bliznowaceniu tkanki.
EN
In this work the task of preparation of drug release system based on the biodegradable polymeric materials made from nanofibers obtained by electrospinning is presented. The main goal of this work was to create an active dressing for the use in neurosurgery. The work includes experimental and numerical analysis of the release process and transport of the drug to the typical buffer fluid and tissue simulator aimed at finding the optimal conditions to control in time and space the drug concentration distribution. The drug release in proposed mathematical model was described by the adsorption-desorption equation while transport in the porous material by the diffusion equation. Presented analysis of nanofibrous material parameters affecting drug release rate, the mathematical description of the process of local drug release from polymeric materials as well as the transport of active substances in the body, in particular in brain tissue, enabled the construction of a numerical model allowing a parametric evaluation of geometric factors, structure of the material, the drug encapsulation in the fibers, as well as the properties of nanofibers on the drug release profiles. In order to calibrate and validate the numerical model, the experimental system have been proposed to assess transport of the drug analog (rhodamine B and the protein BSA) from the material located in a tissue simulating medium. As a result materials for surgical operations based on three neuroprotective drugs: lipophilic alpha-tocopherol and hydrophilic growth factors NGF (Nerve Growth Factor) and BDNF (Brain Derived Neurotrophic Factor) were developed. As a drug carriers biocompatible biodegradable polymers poly(L-lactideco-caprolactone) PLCL, poly(L-lactide) PLLA, poly(DL-lactide-co-glycolide) PDLG were used. Conducted in collaboration with the Mossakowski Medical Research Centre PAS neurosurgeries performed on an animal model confirmed positive impact of nanofibrous materials on the process of regeneration of nerve tissue, preventing at the same time improper process of tissue scarring.
Rocznik
Tom
Strony
2--215
Opis fizyczny
Bibliogr. 161 poz., rys., tab.
Twórcy
autor
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Bibliografia
  • 1. R. A. Halberstein. Medicinal plants: historical and cross-cultural usage patterns. Annals of Epidemiology, 15(9):686-99, 2005.
  • 2. M. J. Brownstein A brief history of opiates, opioid peptides and opioid receptors. Proceedings of the National Academy of Sciences, 90:5391¬5393, 1993.
  • 3. T. Ciach. Podstawy Farmakologii - wstęp do rozprawy habilitacyjnej. Politechnika Warszawska, 2005.
  • 4. A. T. Florence. Controlled Release in Oral Drug Delivery, London: Springer, 2011
  • 5. R. Deanesly, A. S. Parkes. Further experiments on the administration of hormones by the subcutaneous implantation of tablets. Lancet, 232(6002):606-609, 1938.
  • 6. J. Folkman, D. M. Long. The use of silicone rubber as a carrier for prolonged drug therapy. Journal ofSurgical Research, 4(3):139-142, 1964.
  • 7. FDA Approved Drug Products - Ocusert Pilo Nr 017431. Dostępne online dnia 15 stycznia 2014 r.: www.accessdata.fda.gov
  • 8. A. S. Hoffman. The origins and evolution of „controlled" drug delivery systems. Journal ofControlled Release, 132(3):153-163, 2008.
  • 9. R. Langer, J. Folkman. Polymers for the sustained release of proteins and other macromolecules. Nature, 263(5580):797-800, 1976.
  • 10. M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff, A. J. Domb. Polymer carriers for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 59(4-5):187-206, 2007.
  • 11. O. Pillai, R. Panchagnula. Polymers in drug delivery. Current Opinion in Chemical Biology, 5:447-451, 2001.
  • 12. W. Saltzman. Drug delivery: Engineering principles for drug therapy. New York: Oxford University Press, 2001.
  • 13. S. R. Hwang, K. Kim. Nano-enabled delivery systems across the blood-brain barrier. Archives of Pharmaceutical Research, 37(1):24-30, 2014.
  • 14. K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, W. E. Rudzinski. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 701-2:1-20, 2001.
  • 15. M. Arruebo, M. Valladares, Á. González-Fernández. Antibody-conjugated nanoparticles for biomedical applications. Journal of Nano-materials, 2009:1-24, 2009.
  • 16. E. Mathiowitz. Drug delivery systems. Toxicologic Pathology, 36(1):16-20, 2008.
  • 17. M. TunQay, S. Calis., H. S. Ka§, M. T. Ercan, I. Peksoy, A. A. Hincal. In vitro and in vivo evaluation of diclofenac sodium loaded albumin microspheres. Journal of Microencapsulation, 17(2):145-155, 2000.
  • 18. E. Azizi, A. Namazi, I. Haririan, S. Fouladdel, M. R. Khoshayand, P. Y. Shotorbani, A. Nomani, T. Gazori. Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector. International Journal of Nanomedicine, 5:455-61, 2010.
  • 19. R. M. Mainardes, R. C. Evangelista. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. International Journal of Pharmaceutics, 290(1-2):137-44, 2005.
  • 20. A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, H. Car. Nanoparticles as drug delivery systems. Pharmacological Reports, 64(5):1020-37, 2012.
  • 21. M. L. Immordino, F. Dosio, L. Cattel. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1(3):297-315, 2006.
  • 22. L. S. S. Guo, R. L. Hamilton, J. Goerke, J. N. Weinstein, R. J. Havel. Interaction of unilamellar liposomes with serum lipoproteins and apolipoproteins. Journal of Lipid Research, 21(8):993-1003, 1980.
  • 23. Y. Qiu, K. Park. Environment-sensitive hydrogels for drug delivery. Advances of Drug Delivery Reviews, 53(3):321-39, 2001.
  • 24. M. Zochowska, A. Paca, G. Schoehn, J.-P. Andrieu, J. Chroboczek, B. Dublet, E. Szolajska. Adenovirus dodecahedron, as a drug delivery vector. PLoS One, 4(5):5569, 2009.
  • 25. H. S. Yoo, T. G. Kim, T. G. Park. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advances of Drug Delivery Reviews, 61(12):1033-1042, 2009.
  • 26. A. Odysseos. Coaxial nanofibers with tunable release properties as drug delivery and tissue engineering platforms. EuroNanoForum, Budapeszt, 30 maja, 2011.
  • 27. X. M. Wu, C. J. Branford-white, D.-G. Yu, N. P. Chatterton, L. Zhu. Preparation of core-shell PAN nanofibers encapsulated alpha-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids and Surfaces Part B. Biointerfaces, 82(1):247-52, 2011.
  • 28. S. Khansari, S. Duzyer, S. Sinha-Ray, A. Hockenberg, A. L. Yarin, B. Pourdeyhimi. Two-stage desorption-controlled release of fluorescent dye and vitamin from solution-blown and electrospun nanofiber mats containing porogens. Molecular Pharmaceutics 10:4509-4526, 2013.
  • 29. N. Tucker, J. Stanger. The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics Special Issue, 2012.
  • 30. W. Gilbert. On the loadstone and magnetic bodies, and on the great magnet the earth. A new physiology, demonstrated with many arguments and experiments. Tłumaczenie P. Fleury Motellay 1893. London: London Bernard Quaritch, 1600.
  • 31. A. Formhals. Process and apparatus for preparing artificial threads, US19755041934.
  • 32. S. N. Reznik, A. L. Yarin, A. Theron, E. Zussman. Transient and steady shapes of droplets attached to a surface in a strong electric field. Journal of Fluid Mechanics, 516:349-377, 2004.
  • 33. S. N. Reznik, A. L. Yarin, E. Zussman, L. Bercovici. Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Physical Fluids, 18(6):062101, 2006.
  • 34. S. A. Theron, E. Zussman, A. L. Yarin. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6):2017-2030, 2004.
  • 35. Wyszukiwarka informacji naukowych; wynik po wpisaniu frazy nanofibers AND electrospinning, 2014. Dostępne on-line 5 stycznia 2014 r.: www.scirus.com.
  • 36. T. A. Kowalewski, S. Błoński, S. Barral. Experiments and modelling of electrospinning process. Bulletin of the Polish Academy ofSciences, 53(4):385-394, 2005.
  • 37. G. I. Taylor. Disintegration of water drops in an electric field. Proceedings ofRoyal Society, 1964.
  • 38. H. Fong, I. Chun, D. Reneker. Beaded nanofibers formed during electrospinning. Polymer, 40(16):4585-4592, 1999.
  • 39. J. Doshi, D. Reneker. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3):151-160, 1995.
  • 40. T. A. Kowalewski. On separation of droplets from liquid jet. Fluid Dynamics Research, 17:121-145,1996.
  • 41. F. Innocente, D. Mandracchia, E. Pektok, B. Nottelet, J.-C. Tille, S. de Valence, G. Faggian, A. Mazzucco, A. Kalangos, R. Gurny, M. Moeller, B. H. Walpoth. Paclitaxel-eluting biodegradable synthetic vascular prostheses: a step towards reduction of neointima formation? Circulation, 120(11):37-45, 2009.
  • 42. H. Jiang, D. Fang, B. Hsiao, B. Chu, W. Chen. Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes. Journal of Biomaterials Science Polymers Edition, 15(3):279-296, 2004.
  • 43. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing. Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release, 92(3):227-231, 2003.
  • 44. J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen, X. Jing. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release, 105(1-2):43-51, 2005.
  • 45. S. H. Ranganath, C.-H. Wang. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials, 29(20):2996-3003, 2008.
  • 46. E.-R. Kenawy, F.I. Abdel-Hay, M. H. El-Newehy, G.E. Wnek, F. Abdelhay, M. Elnewehy. Processing of polymer nanofibers through electrospinning as drug delivery systems. Materials Chemistry and Physics, 113(1):296-302, 2009.
  • 47. G. Buschle-Diller, J. Cooper, Z. Xie, Y. Wu, J. Waldrup, X. Ren. Release of antibiotics from electrospun bicomponent fibers. Cellulose, 14(6):553-562, 2007.
  • 48. Y. Su, Q. Su, W. Liu, G. Jin, X. Mo, S. Ramakrishna. Dual-drug encapsulation and release from core-shell nanofibers. Journal of Biomaterials Science Polymers Edition, 23:861-871, 2011.
  • 49. R. Srikar, A. L. Yarin, C. M. Megaridis, A. V. Bazilevsky, E. Kelley. Desorption-limited mechanism of release from polymer nanofibers. Langmuir, 24(3):965-74, 2008.
  • 50. C. Wang, K. W. Yan, Y. D. Lin, P. C. H. Hsieh. Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules, 43(15):6389-6397, 2010.
  • 51. D. Han, A. J. Steckl. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. Applied Materials and Interfaces, 5:8241-8245, 2013.
  • 52. T. Okuda, K. Tominaga, S. Kidoaki. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. Journal of Controlled Release, 143(2):258-64, 2010.
  • 53. H. Yoon, G. Kim. A three-dimensional polycaprolactone scaffold combined with a drug delivery system consisting of electrospun nanofibers. Journal of Pharmaceutical Science, 100(2):22-23, 2011.
  • 54. G. Kim, H. Yoon, Y. Park. Drug release from various thicknesses of layered mats consisting of electrospun polycaprolactone and polyethylene oxide micro/nanofibers. Applied Physics A, 100(4):1197-1204, 201.
  • 55. X. Li, Y. Su, C. He, H. Wang, H. Fong, X. Mo. Sorbitan monooleate and poly(L-lactide-co-epsilon-caprolactone) electrospun nanofibers for endothelial cell interactions. Journal of Biomedical Materials Research Part A, 91(3):878-885, 2009.
  • 56. L. Tian, M. P. Prabhakaran, X. Ding, D. Kai, S. Ramakrishna. Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-e-caprolactone) nanofibers for sustained release in cardiac tissue engineering. Journal of Materials Science, 47(7):3272-3281, 2011.
  • 57. X. Li, Y. Su, S. Liu, L. Tan, X. Mo, S. Ramakrishna. Encapsulation of proteins in poly(L-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloids and Surfaces B. Biointerfaces, 75(2):418-24, 2010.
  • 58. S.Y. Chew, J. Wen, E. K. F. Yim, K. W. Leong. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 6(4):2017-24, 2005.
  • 59. S. Maretschek, A. Greiner, T. Kissel. Electrospun biodegradable nano-fiber nonwovens for controlled release of proteins. Journal of Controlled Release, 127(2):180-187, 2008.
  • 60. Y. Peng, M. Ang, S. Foo, W. S. Lee, Z. Ma, S. S. Venkatraman, T. T. Wong. Biocompatibility and biodegradation studies of subconjunctival implants in rabbit eyes. PLoS One, 6(7):22507, 2011.
  • 61. C. He, Z. Huang, X. Han, L. Liu, H. Zhang, L. Chen. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. Journal of Macromolecular Science, Part B, 45(4):515-524, 2006.
  • 62. J. C. Dias, C. Ribeiro, V. Sencadas, G. Botelho, J. L. G. Ribelles, S. Lanceros-Mendez. Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 31(6):770-776, 2012.
  • 63. N. Böigen, Y. Z. Menceloglu, K. Acatay, I. Vargel, E. Pigkin. In vitro and in vivo degradation of non-woven materials made of poly(epsilon-caprolactone) nanofibers prepared by electrospinning un¬der different conditions. Journal of biomaterials science. Polymer edition, 16(12):1537-55, 2005.
  • 64. W. Cui, X. Li, X. Zhu, G. Yu, S. Zhou, J. Weng. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules, 7(5):1623-9, 2006.
  • 65. S. C. Chen, X. B. Huang, X. M. Cai, J. Lu, J. Yuan, J. Shen. The influence of fiber diameter of electrospun poly(lactic acid) on drug delivery. Fibers and Polymers, 13(9):1120-1125, 2012.
  • 66. J. L. Lowery, N. Datta, G. C. Rutledge. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials, 31(3):491-504, 2010.
  • 67. Q. P. Pham, U. Sharma, A. G. Mikos. Electrospun poly(epsiloncaprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 7(10):2796-805, 2006.
  • 68. A. Szentivanyi, T. Chakradeo, H. Zernetsch, B. Glasmacher. Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. Advanced Drug Delivery Reviews, 63(4-5):209-20, 2011.
  • 69. J. B. Lee, S.I. Jeong, M. S. Bae, D. H. Yang, D. N. Heo, C. H. Kim, E. Alsberg, I. K. Kwon. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Engineering Part A, 17(21):2695-2702, 2011.
  • 70. J. Sirc, S. Kubinova, R. Hobzova, D. Stranska, P. Kozlik, Z. Bosakova, D. Marekova, V. Holan, E. Sykova, J. Michalek. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. International Journal ofNanomedicine, 7:5315-25, 2012.
  • 71. S. Srouji, D. Ben-David, R. Lotan, E. Livne, R. Avrahami, E. Zussman. Slow-release human recombinant bone morphogenic protein-2 embedded within electrospun scaffolds for regeneration of bone defect?: in vitro and in vivo evaluation. Tissue Engineering Part A, 17(3-4):269-277, 2011.
  • 72. B. Song, C. Wu, J. Chang. Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomaterialia, 8(5):1901-7, 2012.
  • 73. D. W. Chen, Y.-H. Hsu, J.-Y. Liao, S.-J. Liu, J.-K. Chen, S. W.-N. Ueng. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. International Journal of Pharmaceutics, 430(1-2):335-341, 2012.
  • 74. H. Xu, H. Li, and J. Chang. Controlled drug release from a polymer matrix by patterned electrospun nanofibers with controllable hydrophobicity Journal ofMaterials Chemistry B, 1(33):4182, 2013.
  • 75. H. B. Wang, M. E. Mullins, J. M. Cregg, A. Hurtado, M. Oudega, M. T. Trombley, R. J. Gilbert. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. Journal of Neural Engineering, 6(1):016001, 2009.
  • 76. Z. Feng, H.-J. Lu, M. K. Leach, N.-P. Huang, Y. Wang, C. Liu, Z. Gu. The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells. Biomedical Materials, 5(6):65011, 2010.
  • 77. Z. X. Meng, X. X. Xu, W. Zheng, H. M. Zhou, L. Li, Y. F. Zheng, X. Lou. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfarces B. Biointerfaces, 84(1):97-102, 2011.
  • 78. S. Sage, (Biomedical Image Group (BIG), EPFL, OrientationJ ImageJ's plugin for directional analysis in images. Dostępne on-line 25 stycznia 2014: http:bigwww.epfl.chdemoorientation
  • 79. N. K. Mohtaram, J. Ko, M. Carlson, M. B. Jun, S. M. Willerth. Nanofabrication of electrospun fibers for controlled release of retinoic acid. Proceedings of the 8th International Conference on MicroManufacturing, 34:432-437, 2013.
  • 80. N. A. Peppas. Historical perspective on advanced drug delivery: How engineering design and mathematical modeling helped the field mature. Advanced Drug Delivery Reviews, 65(1):5-9, 2013.
  • 81. J. Siepmann, F. Siepmann. Mathematical modeling of drug delivery. International Journal of Pharmaceutics, 364(2):328-43, 2008.
  • 82. M. J. McGirt, H. Brem. Carmustine wafers (Gliadel) plus concomitant temozolomide therapy after resection of malignant astrocytoma: growing evidence for safety and efficacy. Annals of Surgical Oncology, 17(7):1729-1731, 2010.
  • 83. J. Perry, A. Chambers, K. Spithoff, N. Laperriere. Gliadel wafers in the treatment of malignant glioma: a systematic review. Current Oncology, 14(5):189-94, 2007.
  • 84. C. H. C. Wang, J. Li, C. S. Teo, T. Lee. The delivery of BCNU to brain tumors. Journal of Controlled Release, 61(1-2):21-41, 1999.
  • 85. M. Chasin, D. Lewis, R. Langer. Polyanhydrides for controlled release. Biopharmaceutical Manufacture, 1:33-46, 1988.
  • 86. L. L. Lao, N. A Peppas, F. Y. C. Boey, S. S. Venkatraman. Modeling of drug release from bulk-degrading polymers. International Journal of Pharmaceutics, 418(1):28-41, 2010.
  • 87. J. Siepmann, N. A. Peppas. Higuchi equation: derivation, applications, use and misuse. International Journal of Pharmaceutics, 418(1):6-12, 2011.
  • 88. D. Cooney. Effect of geometry on the dissolution of pharmaceutical tablets and other solids: surface detachment kinetics controlling. American Institute of Chemical Engineers Journal, 18:446-449, 1972.
  • 89. H. Hopfenberg. Controlled release from erodible slabs, cylinders, and spheres. Controlled Release Polymer Formulations ACS Symposium 33:26-32, 1976.
  • 90. L. Huang, C. Branford-White, X.-X. Shen, D.-G. Yu, L. Zhu. Timeengineeringed biphasic drug release by electrospun nanofiber meshes. International Journal of Pharmaceutics, 436(1-2):88-96, 2012.
  • 91. M. Jannesari, J. Varshosaz, M. Morshed, M. Zamani. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. International Journal of Nanomedicine, 6:993-1003, 2011.
  • 92. T. T. Nguyen, C. Ghosh, S.-G. Hwang, N. Chanunpanich, J. S. Park. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. International Journal of Pharmaceutics, 439(1-2):296-306, 2012.
  • 93. P. Taepaiboon, U. Rungsardthong, P. Supaphol. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. European Journal of Pharmaceutics and Biopharmaceutics, 67(2):387-97, 2007.
  • 94. D. G. Yu, X. Wang, X. Y. Li, W. Chian, Y. Li, Y. Z. Liao. Electrospun biphasic drug release polyvinylpyrrolidoneethyl cellulose coresheath nanofibers. Acta Biomaterialia, 9(3):5665-72, 2013.
  • 95. T. Huguch.i Mechanism of sustained-action medication. Journal of Pharmaceutical Science, 52(12):1145-1149, 1963.
  • 96. J. Siepmann, F. Siepmann. Modeling of diffusion controlled drug delivery. Journal ofControlled Release, 161(2):351-62, 2011.
  • 97. J. Crank The mathematics of Diffusion. Oxford: Oxford University Press, 1975.
  • 98. J. M. Vergnaud. Controlled drug release of oral dosage forms. Ellis Horwood New York, 1993.
  • 99. L. Zeng, X. Wu. Modeling the sustained release of lipophilic drugs from liposomes. Applied Physics Letters, 97(7):073701, 2010.
  • 100. L. Zeng, L. An, X. Wu. Modeling drug-carrier interaction in the drug release from nanocarriers. Journal of Drug Delivery, 2011:370308, 2011.
  • 101. A. R. Tzafriri. Mathematical modeling of diffusion-mediated release from bulk degrading matrices. Journal Controlled Release, 63(1-2):69-79, 2000.
  • 102. Y. Zhou, X. Y. Wu. Finite element analysis of diffusional drug release from complex matrix systems. I. Complex geometries and composite structures. Journal Controlled Release, 1(49):277-288, 1997.
  • 103. D. L. Bernik, D. Zubiri, M. E. Monge, R. M. Negri. New kinetic model of drug release from swollen gels under non-sink conditions. Colloids and Surfaces A Physicochem. Eng. Asp., 273(1-3):165-173, 2006.
  • 104. M. Grassi, G. Grassi. Mathematical modelling and controlled drug delivery: matrix systems. Current Drug Delivery, 2(1):97-116, 2005.
  • 105. P. Nakielski. Symulacje numeryczne procesu desorpcji i dyfuzji leku w materiale z nanowłókien. Modelowanie inżynierskie, 48:99-111, 2013.
  • 106. M. Frontczak-Baniewicz, S. J. Chrapusta, D. Sulejczak. Long-term consequences of surgical brain injury - characteristics of the neurovascular unit and formation and demise of the glial scar in a rat model. Folia Neuropathol., 49(3):204-18, 2011.
  • 107. W. Sylwanowicz, A. Michajlik, W. Romotowski. Anatomia i fizjologia człowieka. Podręcznik dla średnich szkół medycznych. Warszawa: Państwowy Zakład Wydawnictw Lekarskich, 1980.
  • 108. M. Faul, L. Xu, M. Wald, V. Coronado. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002-2006. National Center for Injury Prevention and Control, 2010.
  • 109. J. T. Flaada, C. L. Leibson, J. N. Mandrekar, N. Diehl, P. K. Perkins, A. W. Brown, J. F. Malec. Relative risk of mortality after traumatic brain injury: a population-based study of the role of age and injury severity. Journal of Neurotrauma, 24(3):435-45, 2007.
  • 110. A. W. Brown, A. M. Moessner, J. Mandrekar, N. N. Diehl, C. L. Leibson, J. F. Malec. A survey of very-long-term outcomes after traumatic brain injury among members of a population-based incident cohort. Journal of Neurotrauma, 28(2):167-76, 2011.
  • 111. A. A. Linninger, M. R. Somayaji, T. Erickson, X. Guo, R. D. Penn. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. Journal of Biomechanics, 41(10):2176-87, 2008.
  • 112. C. S. Teo, W. Hor Keong Tan, T. Lee, C.-H. Wang. Transient interstitial fluid flow in brain tumors: Effect on drug delivery. Chemical Engineering Science, 60(17):4803-4821, 2005.
  • 113. J. Siepmann, F. Siepmann, A. T. Florence. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. International Journal of Pharmaceutics, 314(2):101- 19, 2006.
  • 114. Z. J. Chen, W. C. Broaddus, R. R. Viswanathan, R. Raghavan, G. T. Gillies. Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Transactions on Biomedical Engineering, 49(2):85-96, 2002.
  • 115. A. Kamal-Eldin, L. A. Appelqvist. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7):671-701, 1996.
  • 116. C. E. Krewson, W. M. Saltzman. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Research, 727(1-2):169-81, 1996.
  • 117. K. J. Lampe, D. S. Kern, M. J. Mahoney, K. B. Bjugstad. The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: Protein distribution and the glial response. Journal ofBiomedical Material Research A, 96(3):595-607, 2011.
  • 118. M. Rutkowski, K. Grzegorczyk. Modifications of spectrophotometric methods for antioxidative vitamins determination convenient in analytic practice. ACTA Scientiarum Polonorum, 6:17-28,2007.
  • 119. M. Roth. Fluorescence reaction for amino acids. Analytical Chemistry, 43(7):880-2, 1971.
  • 120. M. Brugnara. Contact Angle plugin for ImageJ. Dostępne on-line 25 stycznia 2014: http:rsb.info.nih.govijpluginscontact-angle.html.
  • 121. Matlab, Mathworks Inc., http:www.mathworks.com
  • 122. J. Juza. The pendant drop method of surface tension measurement: equation interpolating the shape factor tables for several selected planes. Journal of Physics, 47:351357, 1997.
  • 123. D. Soumpasis. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophysics Journal 3:95-97, 1983.
  • 124. N. Sindhwani, O. Ivanchenko, E. Lueshen, K. Prem, A. A. Linninger. Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery. IEEE Transactions on Biomedical Engineering, 58(3):626-32, 2011.
  • 125. P. Nakielski, T. Kowalczyk, K. Zembrzycki, T. A. Kowalewski. Experimental and numerical evaluation of drug release feom nanofiber mats to brain tissue. Journal of Biomedical Materials Research Part B Applied Biomaterials, 103(2):282-291, 2015
  • 126. Comsol Multiphysics®, Comsol Inc., www.comsol.com.
  • 127. T. Chung Computational fluid dynamics, Second. Edt.. New York: Cambridge University Press, 2010
  • 128. D. Kuzmin. A guide to Numerical methods for transport equations. Friedrich Alexander Universitat Erlangen Nurnberg, 2010,
  • 129. E. M. Johnson, D. A. Berk, R. K. Jain, W. M. Deen. Hindered diffusion in agarose gels: test of effective medium model. Biophysics Journal, 70(2):1017-23, 1996.
  • 130. R. Phillips. A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophysics Journal, 79:3350-3354, 2000.
  • 131. D. S. Clague, R. J. Phillips. Hindered diffusion of spherical macromolecules through dilute fibrous media. Physical Fluids, 8(7):1720, 1996.
  • 132. T. Stylianopoulos, A. Yeckel, J. J. Derby, X.-J. Luo, M. S. Shephard, E. A. Sander, V. H. Barocas. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Physical fluids, 20(12):123601, 2008.
  • 133. W. Perrins. Transport properties of regular arrays of cylinders. Proceedings Royal Society of London, 369:207-225, 1979.
  • 134. L. Johansson, J. Lofroth. Diffusion and interaction in gels and solutions. 4. Hard sphere Brownian dynamics simulations. Journal of Chemical Physics, 98(9):7471-7479, 1993.
  • 135. B. Amsden. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 31(23):8382-8395, 1998.
  • 136. M. Gandhi, R. Srikar, A. L. Yarin, C. M. Megaridis, R. A. Gemeinhart. Mechanistic examination of protein release from polymer nanofibers. Molecular Pharmaceutics, 6(2):641-7, 2009.
  • 137. E. Washburn. The dynamics of capillary flow. Physical Review, 17:273283, 1921.
  • 138. V. N. Phan, N.-T. Nguyen, C. Yang, P. Joseph, L. Djeghlaf, D. Bourrier, A.-M. Gue. Capillary filling in closed end nanochannels. Langmuir, 26(16):13251-5, 2010.
  • 139. R. Blagoeva, A. Nedev. Monolithic Controlled Delivery Systems: Part II. Basic Mathematical Models. International Journal Bioautomation 1:106–117, 2006
  • 140. I. Galdi, G. Lamberti. Drug release from matrix systems: analysis by finite element methods. Heat Mass Transf., 48(3):519–528, 2011.
  • 141. M. Manzano, G. Lamberti, I. Galdi, M. Vallet-Regí. Anti-osteoporotic drug release from ordered mesoporous bioceramics: experiments and modeling. AAPS PharmSciTech, 12(4):1193–9, 2011.
  • 142. K. Miller, V. Kurtcuoglu. Biomechanics of the brain. New York: Springer, 2011.
  • 143. S. Gupta, M. Soellinger, P. Boesiger, D. Poulikakos, V. Kurtcuoglu. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. Journal of Biomechanical Engineering, 131(2):021010, 2009.
  • 144. S. Gupta, M. Soellinger, D. M. Grzybowski, P. Boesiger, J. Biddiscombe, D. Poulikakos, V. Kurtcuoglu. Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. Journal of The Royal Society Interface, 7(49):1195–204, 2010
  • 145. A. A. Linninger, C. Tsakiris, D. C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger, R. Penn. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Transactions on Biomedical Engineering, 52(4):557–65, 2005.
  • 146. M. Modi, R. Mullapudi, M. R. Somayaji, M. Xenos, A. A. Linninger, D. C. Zhu, R. Penn. Mimics – An indispensable tool for patient-specific image analysis subarachnoid space. Brain 1:1–10, 2006.
  • 147. B. Sweetman, M. Xenos, L. Zitella, A. A. Linninger. Computational prediction of cerebrospinal fluid flow in the human brain. Computers in Biology and Medicine, 41(2):67–75, 2011.
  • 148. S. Yan, L. Xiaoqiang, L. Shuiping, M. Xiumei, S. Ramakrishna. Controlled release of dual drugs from emulsion electrospun nanofibrous mats. Colloids and Surfaces B. Biointerfaces, 73(2):376–81, 2009.
  • 149. T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, R. K. Jain. Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation. Biophysics Journal, 99(10):3119–28, 2010.
  • 150. J. Andrychowski, M. Frontczak-Baniewicz, D. Sulejczak, T. Kowalczyk, T. Chmielewski, Z. Czernicki, T. A. Kowalewski. Nanofiber nets in prevention of cicatrisation in spinal procedures. Experimental study. Folia Neuropathologica, 41(2):147–157, 2013.
  • 151. D. Sulejczak, J. Andrychowski, T. Kowalczyk, P. Nakielski, M. Frontczak-Baniewicz, T. A. Kowalewski. Electrospun nanofiber mat as a protector against the consequences of brain injury. Folia Neuropathologica, 52(1):56-69, 2014.
  • 152. C. E. Krewson, M. L. Klarman, W. M. Saltzman. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Research, 680(1-2):196-206, 1995.
  • 153. A. L. Yarin. Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polymers for Advanced Technologies, 22(3):310-317, 2011.
  • 154. H. Zhang, C. Zhao, Y. Zhao, G. Tang, X. Yuan. Electrospinning of ultrafine core/shell fibers for biomedical applications. Science China Chemistry, 53(6):1246-1254, 2010.
  • 155. A. L. Yarin, E. Zussman, J. H. Wendorff, A. Greiner. Material encapsulation and transport in core-shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. Journal of Material Chemistry, 17(25):2585, 2007.
  • 156. Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, S. Ramakrishna. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules, 7(4):1049-57, 2006.
  • 157. T. A. Kowalewski, T. Kowalczyk, P. Nakielski, J. Andrychowski, M. Frontczak-Baniewicz, D. Sulejczak. Raport z grantu NCBiR nr NR130081010: „Zastosowanie elektroprzędzonych nanowłókien jako opatrunków aktywnych w zapobieganiu pourazowym zmianom w tkance mózgowej" 2013.
  • 158. P. McGeer, E. McGeer. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Research Review, 21(1995):195-218, 1995.
  • 159. J. Anderson. inflammatory response to implants. ASAIO Journal, 34:101-107, 1988.
  • 160. J. Andrychowski, M. Frontczak-Baniewicz, D. Sulejczak, T. Kowalczyk, T. A. Kowalewski, P. Nakielski. Zastosowanie opatrunków z nanowłókien polimerowych w zapobieganiu pourazowym zmianom w mózgu. P.404667, 2013.
  • 161. P. Nakielski, T. Kowalczyk, T. A. Kowalewski. Delivery system based on polymer nanofibers. IPPT Reports Institute of Fundamental Technological Research, 47(4):19-24, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35bb5da4-6094-4f1e-b115-df8dfb454a6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.