Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The behavioral features of the population are addressed in transport models by different levels of territorial disaggregation and the creation of demand strata in a territory. The need for input data grows exponentially with the demand for a detailed zonal system of the territory. The basic source is the mobility survey. This article deals with the comparison of the calculation of the probability of choosing a transport mode for trips using the classic multinominal logit model and the best-worst method. We used data from a mobility survey in the Žilina region as a basic sample. The analysis covered 11 districts and their gravity areas. The individual transport relations are evaluated in detail in the analysis. The results confirm the high degree of accuracy of the best-worst method in the calculation of mode choice on a regional scale. Despite the promising results of the agreement in the confrontation with the mobility survey, it is necessary to verify the modeled data with a more detailed area with disaggregation on-demand strata.
Czasopismo
Rocznik
Tom
Strony
55--65
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- University of Žilina; University Science Park; Univerzitná 8215/1, 010 26 Žilina, Slovakia
autor
- University of Žilina, Faculty of Civil and Environmental Engineering; Univerzitná 8215/1, 010 26 Žilina, Slovakia
autor
- University of Žilina, Faculty of Civil and Environmental Engineering; Univerzitná 8215/1, 010 26 Žilina, Slovakia
autor
- University of Žilina; University Science Park; Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
- 1. Asmael, N.M. & Wazer, Z.A. Prediction origin-destination matrix of freight travel demand in Baghdad City. Transport Problems. 2022. Vol. 17. No. 3. P. 187-196.
- 2. Bučko, B. & Michálek, M. & Papierniková, K. & Zábovská, K. Smart mobility and aspects of vehicle-to-infrastructure: A data viewpoint. Applied Sciences. 2021. Vol. 11(22).
- 3. Nikiforov, O. & Safronov, K. & Mochalin, S. & Koleber, Y. Survey method improvement of urban passenger transport works. Transport Problems. 2020. Vol. 15. No. 3. P. 127-138.
- 4. Rezaei, J. Best-worst multi-criteria decision-making method. Omega. 2015. Vol. 53. P. 49-57.
- 5. Decký, M. Design of multicriteria decision-making methods and their application in the field of sports and games. 2019. Available at: https://opac.crzp.sk/?fn=docviewChild00009ADF.
- 6. Krivda, V. & Petru, J. & Macha, D. & Plocova, K. & Fibich, D. An analysis of traffic conflicts as a tool for sustainable road transport. Sustainability. 2020. Vol. 12(17).
- 7. What is MCDM / MCDA used for? Available at: https://www.1000minds.com/decision making/what-is-mcdm-mcda.
- 8. Keeney, R.L. & Raiffa, H. Decisions with multiple objectives: preference and value tradeoffs. Cambridge University Press, Cambridge & New York, 1993.
- 9. Dow, J.K. & Endersby, J.W. Multinomial probit and multinomial logit: a comparison of choice models for voting research. Elect Stud. 2004. Vol. 23(1). P. 107-122.
- 10. VÚC Žilina. Available at: https://www.zilinskazupa.sk/sk/prave-menu/zilinsky-samospravny-kraj/zakladne-informacie/
- 11. Celko, J. & et al. Dopravné plánovanie. Žilina: EDIS. 2015. [In Slovak: Transportation Planning].
- 12. Krasić, D. & Novačko, L. The impact of public transport network accessibility on trip generation model. Promet - Traffic - Traffico. 2015. Vol. 27(2). P. 165-172.
- 13. Kušnierová, J. & Hollarek, T. Metódy modelovania a prognózovania prepravného a dopravného procesu. Žilina: EDIS. 2000. [In Slovak: Methodology of modeling and prognosis of the Transport process].
- 14. Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega. 2016. Vol. 64. P. 126-130.
- 15. Bierlaire, M. PandasBiogeme: a short introduction. Available at: http://transp-or.epfl.ch/ documents/technicalReports/Bier18.pdf. 2018.
- 16. Novačko, L. & Babojelić, K. & God, N. & Babić, L. Estimation of modal split parameters-a case study. Trans Motauto World. 2020. Vol. 5(2). P. 51-53.
- 17. Ben-Akiva, M. & Bierlaire, M. Discrete Choice Methods and their Applications to Short Term Travel Decisions. In: Handbook of Transportation Science. Boston: Springer. 1999.
- 18. Oppenhein, N. Urban Travel Demand Modeling: From Individual Choices to General Equilibrium. Vol. 1. Wiley-Interscience. 1995.
- 19. Bovy, P.H.L. & Bliemer, M.C.J. & van Nes, R. Course CT4801 Transportation Modeling. 2006. 20. de Dios Ortuzar, J. & Willumsen, L.G. Modelling Transport. Vol. 4. United Kingdom: John Wiley & Sons, Ltd. 2011.
- 21. Chajdiak, J. & Komorník, J. & Komorníková, M. Statistical methods. Bratislava: STATIS. 1999.
- 22. p-value. Available at: https://cit.vfu.cz/statpotr/POTR/Teorie/Predn3/hypotezy.htm.
- 23. Rho squared. Available from: https://thestatsgeek.com/2014/02/08/r-squared-in-logistic-regression/.
- 24. Jandacka, D. & Durcanska, D. & Kovalova, D. Concentrations of traffic related pollutants in the vicinity of different types of urban crossroads. Communications - Scientific Letters of the University of Zilina. 2019. Vol. 21(1). P. 49-58.
- 25. Hrudkay, K. & Jaroš, J. Conceptual development of electromobility in conditions of Slovak municipalities. Acta Logistica. 2019. Vol. 6(4). P. 147-154.
- 26. Hudec, J. & Šarkan, B. & Cződörová, R. & Caban, J. & Droździel, P. The impact of roadside technical inspections on transport and logistics systems in the Slovak Republic. Transport Problems. 2022. Vol. 17. No. 3. P. 61-73.
- 27. Kudela, P. & Fandáková, M. & Palcák, M. & Kordek, J. Utilization of modern methods for documentation of traffic accidents in road transport. In: Transport Means - Proceedings of the International Conference. 2021. P. 584-588.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35b90ec9-463c-41e2-a8e9-84c3a69fb770