PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Difference melt model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The basic objective of the research is to construct a difference model of the melt motion. The existence of a solution to the problem is proven in the paper. It is also proven the convergence of the difference problem solution to the original problem solution of the melt motion. The Rothe method is implemented to study the Navier-Stokes equations, which provides the study of the boundary value problems correctness for a viscous incompressible flow both numerically and analytically.
Rocznik
Strony
607--627
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wzory
Twórcy
  • Karaganda Technical University, Kazakhstan
  • Karaganda Technical University, Kazakhstan
  • Karaganda Technical University, Kazakhstan
Bibliografia
  • [1] R. Lakshminarayana, K. Dadzie, R. Ocone, M. Borg, and J. Reese: Recasting Navier-Stokes equations. Journal of Physics Communications, 3(10), (2019), 13-18, DOI: 10.1088/2399-6528/ab4b86
  • [2] S.Sh. Kazhikenova, S.N. Shaltaqov, D. Belomestny, and G.S. Shaihova: Finite difference method implementation for Numerical integration hydrodynamic equations melts. Eurasian Physical Technical Journal, 17(33), (2020), 50-56.
  • [3] C. Bardos: A basic example of non linear equations: The Navier-Stokes equations. Mathematics: Concepts and Foundations, III (2002), http://www.eolss.net/sample-chapters/c02/e6-01-06-02.pdf.
  • [4] J. Xu and W. Yu: Reduced Navier-Stokes equations with streamwise viscous diffusion and heat conduction terms. AIAA Pap., 1441 (1990), 1-6, DOI: 10.2514/6.1990-1441.
  • [5] Y. Seokwan and K. Dochan: Three-dimensional incompressible Navier-Stokes solver using lower-upper symmetric Gauss-Seidel algorithm. AIAA Journal, 29(6), (1991), 874-875, DOI: 10.2514/3.10671.
  • [6] P.M. Gresho: Incompressible fluid dynamics: some fundamental formulation issues. Annual Review of Fluid Mechanics, 23, (1991), 413-453, DOI: 10.1146/annurev.fl.23.010191.002213.
  • [7] S.E. Rogers, K. Dochan, and K. Cetin: Steady and unsteady solutions of the incompressible Navier-Stokes equations. AIAA Journal, 29(4), (1991), 603-610, DOI: 10.2514/3.10627.
  • [8] S. Masayoshi, T. Hiroshi, S. Nobuyuki, and N. Hidetoshi: Numerical simulation of three-dimensional viscous flows using the vector potential method. JSME International Journal, 34(2), (1991), 109-114, DOI: 10.1299/jsmeb1988.34.2_109.
  • [9] E. Sciubba: A variational derivation of the Navier-Stokes equations based on the exergy destruction of the flow. Journal of Mathematical and Physical Sciences, 25(1), (1991), 61-68.
  • [10] A. Bouziani and R. Mechri: The Rothe’s method to a parabolic integrodifferential equation with a nonclassical boundary conditions. International Journal of Stochastic Analysis, Article ID 519684, (2010), DOI: 10.1155/2010/519684.
  • [11] N. Merazga and A. Bouziani: Rothe time-discretization method for a nonlocal problem arising in thermoelasticity. Journal of Applied Mathematics and Stochastic Analysis, 2005(1), (2005), 13-28, DOI: 10.1080/00036818908839869.
  • [12] T.A. Barannyk, A.F. Barannyk, and I.I. Yuryk: Exact solutions of the nonliear equation. Ukrains’kyi Matematychnyi Zhurnal, 69(9), (2017), 1180-1186, http://umj.imath.[K]iev.ua/index.php/umj/article/view/1768.
  • [13] N.B. Iskakova, A.T. Assanova, and E.A. Bakirova: Numerical method for the solution of linear boundary-value problem for integrodifferential equations based on spline approximations. Ukrains’kyi Matematychnyi Zhurnal, 71(9), (2019), 1176-91, http://umj.imath.[K]iev.ua/index.php/umj/article/view/1508.
  • [14] S.L. Skorokhodov and N.P. Kuzmina: Analytical-numerical method for solving an Orr-Sommerfeld type problem for analysis of instability of ocean currents. Zh. Vychisl. Mat. Mat. Fiz., 58(6), (2018), 1022-1039, DOI: 10.7868/S0044466918060133.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35ad749b-cea8-4981-b763-daeb0d720f29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.