PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural characterization of borided Co-Cr-Mo alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study involves the effect of boriding powder composition on the microstructure and hardness of a CoCrMo alloy borided in a solid medium using the powder pack method. To investigate the effect of boriding powder composition, two different commercial boriding agents, Ekabor-HM and Ekabor III, were thoroughly mixed with ferrosilicon powders to form the boriding media. The CoCrMo samples were tightly packed with the Ekabor-HM and Ekabor III boriding powders in stainless steel containers to minimize oxidation. The boriding process was carried out under atmospheric conditions for 9 h in an electrical resistance furnace preheated to 1223 K. X-ray diffraction (XRD) analyses revealed that the surfaces of the borided CoCrMo alloys consisted of a bilayer composed of CoB and Co2B phases and also contained minor amounts of CrB, Mo2B5, and Mo2B. The average thickness of the boride layer in the samples borided with Ekabor HM and Ekabor III powders was 28±4.1 μm and 21±2.3 μm, while the average hardness of the boride layer was 1752±5.3 HV0.1 and 1364±3.8 HV0.1, respectively.
Rocznik
Strony
90--98
Opis fizyczny
Bibliogr. 40 poz., il., fot., wykr.
Twórcy
autor
  • Süleyman Demirel University, Faculty of Arts and Sciences, Department of Physics, Isparta, Turkey
  • Süleyman Demirel University, Graduate School of Natural and Applied Sciences, Isparta, Turkey
autor
  • Isparta University of Applied Sciences, Faculty of Technology, Mechanical Engineering, Isparta, Turkey
Bibliografia
  • 1. Amanov A.: Effect of post-additive manufacturing surface modification temperature on the tribological and tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications, Surface and Coatings Technology, 421 (2021) 127378.
  • 2. Han Y., Liu F., Zhang K., Huang Q., Guo X., Wang C.: A study on tribological properties of textured Co-Cr-Mo alloy for artificial hip joints, International Journal of Refractory Metals and Hard Materials, 95 (2021) 105463.
  • 3. Takaichi A., Kajima Y., Kittikundecha N., Htat H. L., Htoot H., Cho W., Hanawa T., Yoneyama T., Wakabayashi N.: Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co–Cr–Mo alloys produced by selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, 102 (2020) 103496.
  • 4. Herranz G., Berges C., Naranjo J.A., García C., Garrido I.: Mechanical performance, corrosion and tribological evaluation of a Co–Cr–Mo alloy processed by MIM for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, 105 (2020) 103706.
  • 5. Martinez-Nogues V., Nesbitt J.M., Wood R.J.K., Cook R.B.: Nano-scale wear characterization of Co-Cr-Mo biomedical alloys, Tribology International, 93 (2016) 563-572.
  • 6. Lee S.H., Takahashi E., Nomura N., Chiba A.: Effect of Heat Treatment on Microstructure and Mechanical Properties of Ni- and C-Free Co–Cr–Mo Alloys for Medical Applications, Materials Transactions, 46 (2005) 1790-1793. 7. Derek L.S., Northwood O., Cao Z.: The properties of a wrought biomedical cobalt-chromium alloy, Journal of Materials Science, 29 (1994) 1233–1238.
  • 8. Campos-Silva I., Bravo-Bárcenas D., Cimenoglu H., Figueroa-López U., Flores-Jiménez M., Meydanoglu O.: The boriding process in Co-Cr-Mo alloy: Fracture toughness in cobalt boride coatings, Surface and Coatings Technology, 260 (2014) 362–368.
  • 9. Reséndiz-Calderón C.D., Farfan-Cabrera L.I., Oseguera-Peña J. E., Rodríguez-Castro G. A.: Wear and friction of boride layer in Co-Cr-Mo alloy under different micro-abrasion modes (rolling and grooving abrasion), Materials Letters, 279 (2020) 128500.
  • 10. Yildirim M., Keles A.: Effect of aging time on phase transformation, microstructure and hardness of Co-Cr-Mo alloys, Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 7 (2019)146-153.
  • 11. Mallik, M.K., Rao C., Rao V.V.V.S.: Effect of Heat Treatment on Hardness of Co-Cr-Mo Alloy Deposited With Laser Engineered Net Shaping, Procedia Engineering, 97 (2014) 1718–1723.
  • 12. Kauser F.: Corrosion of Co-Cr-Mo alloys for biomedical applications, in Department of Metallurgy and Materials, School of Engineering, University of Birmingham, Birmingham. 2007, pp. 4-285.
  • 13. McMinn D., Daniel J.: History and modern concepts in surface replacement, Journal of Engineering in Medicine, 220 (2006) 239-251.
  • 14. McMinn, D.: Birmingham Hip Resurfacing (BHR) history, development and clinical results. Midland Medical Technologies, Birmingham, 2000, UK.
  • 15. García-Léon R.A., Martínez-Trinidad J., Campos-Silva I., Wong-Angel W.: Mechanical characterization of the AISI 316L alloy exposed to boriding process, Revista Dyna, 87 (2020) 34-41.
  • 16. Nora R., Zine T.M., Abdelkader K., Youcef K., Ali O., Jiang X.: Boriding and boronitro carburising effects on hardness, wear and corrosion behavior of AISI 4130 steel, Revista Matéria, 24 (2019) 1-11.
  • 17. Gunes I., Erdogan M., Celik A. G.: Corrosion Behavior and Characterization of Plasma Nitrided and Borided AISI M2 Steel, Materials Research, 17 (2014) 612-618.
  • 18. Glewicz A., Warcholinski B.: Tribological Properties of CrCN/CrN multilayer coatings, Tribology International, 80 (2014) 34-40.
  • 19. Holmberg K., Matthews A.: Coating Tribology, Properties, Mechanisms, Techniques and Applications in Surface Engineering, Elsevier, Oxford, 2000. UK.
  • 20. Bahce E., Aslan A.K., Cakir N., Guler M.S.: CoCrMo Alaşımı Üzerine TaN Esaslı İnce Film Kaplamaların Yüzey Özelliklerinin İncelenmesi, Karadeniz Fen Bilimleri Dergisi, 9 (2019) 223-237.
  • 21. Resen A.E.: Surface modification of Co-Cr-Mo alloy by plasma assisted CVD, Materials Today: Proceedings, 42 (2021) 2896-2900.
  • 22. Campos-Silva I., Barcenas D.B., Flores-Jimenez M., Arzate-Vazquez I., Lopez-Garcia C., Bernabe-Molina S.: Diffusion Boride Coatings in Co-Cr-Mo Alloy and Some Indentation Properties, Metallography, Microstructure, and Analysis, 4 (2015) 158–168.
  • 23. Meric C., Sahin S., Yilmaz S.S.: Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances, Materials Research Bulletin, 35 (2000) 2165-2172.
  • 24. Jauhari I., Yusof H.A.M., Saidan R.: Superplastic boronizing of duplex stainless steel under dual compression method, Material Science and Engineering: A, 528 (2011) 8106-8110.
  • 25. Wang L., Dalpino P.H.P., Lopes L.G., Pereira J. C.: Mechanical properties of dental restorative materials, Journal of Applied Oral Science, 11 (2003) 162-167.
  • 26. Mahoney E.K., Holt A., Swain M.V., Kilpatrick N. M.: The hardness and modulus of elasticity of primary molar teeth: Journal of Dentistry, 28 (2000) 589-594.
  • 27. Kulka, M: 2019, Current Trends in Boriding. Techniques, Springer.
  • 28. Topuz P., Aydomus T., Aydin O.: Kinetic Investigation of Boronized 34CrAlNi7 Nitriding Steel, International Journal of Engineering and Natural Sciences, 2 (2019) 17-22
  • 29. Fichtl W.: Boronizing and its Practical Applications, Materials Engineering, 2 (1981) 276-286.
  • 30. Cuao-Moreu, C.A., Hernández-Sanchéz E., Alvarez-Vera M., Garcia-Sanchez E.O., Perez-Unzueta A., Hernandez-Rodriguez M.A.L.: Tribological behavior of borided surface on Co-Cr-Mo cast alloy, Wear, 426–427 (2019) 204–211.
  • 31. Arguellas–Ojeda J.L., Marquez–Herrera A., Robles A.S., Angel C.R.M.: Hardness optimization of boride diffusion layer on ASTM F-75 alloy using response surface methodology, Revista Mexicana de Fisica, 63 (2017) 76-81.
  • 32. Calik A.: Effect of powder particle size on the mechanical properties of boronized EN H320 LA steel sheets, ISIJ International, 53 (2013) 160 164.
  • 33. Campos-Silva I., Bravo-Barcenas D., Flores-Jimenez M., Arzate-Vazquez I., Lopez-Garca C., Bernabe-Molina S.: Diffusion Boride Coatings in Co-Cr-Mo Alloy and Some Indentation Properties, Metallography, Microstructure and Analysis, 4 (2015)158–168.
  • 34. Cuao-Moreu C.A., Hernández-Sanchéz E., Alvarez-Vera M., Garcia-Sanchez E.O., Perez-Unzueta A., Hernandez-Rodriguez M.A.L.: Tribological behavior of borided surface on Co-Cr-Mo cast alloy, Wear, 426–427 (2019) 204–211.
  • 35. Morón R.C., Rodríguez-Castro G.A., García Maldonado M.A., Salazar-Gaona A., Bravo-Bárcenas D., Campos-Silva I.: Friction and Damage Evolution of Borided CoCrMo alloy,Journal of Tribology, 141 (2019) 081601.
  • 36. Rodríguez-Castro G.A., Reséndiz-Calderón C.D., Jímenez-Tinoco L.F., Meneses-Amador A., Gallardo-Hernandez E.A.: Micro-abrasive wear resistance of CoB/Co2B coatings formed in Co-Cr-Mo alloy, Surface and Coatings Technology, 284 (2015) 258–263.
  • 37. Mu D., Shen B-I., Zhao X.: Effects of boronizing on mechanical and dry-sliding wear properties of Co-Cr-Mo alloy, Materials and Design, 31 (2010) 3933–3936.
  • 38. Arguelles-Ojeda J.L., Márquez-Herrera A., Saldaña-Robles A.L., Saldaña-Robles A., Corona-Rivera M.A., Moreno-Palmerin J.: Hardness optimization of boride diffusion layer on ASTM F-75 alloy using response surface methodology, Revista Mexicana de Física, 63(2017)1-7.
  • 39. Gunes, I.: Kinetics of borided gear steels, Sadhana, 38 (2013) 527–541.
  • 40. Keddam M., Makuch N., Kulka M., Miklaszewski A.: Mechanical properties and kinetics of boride layers on AISI D2 steel produced by plasma paste boriding, Indian Journal of Engineering and Materials Sciences, 27 (2020) 221-233.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35ab8dba-f319-427c-a7e0-d10b9050102b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.