PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation and physical properties of sugar palm starch/ sugar palm nanofibrillated cellulose bionanocomposite

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Degradacja i właściwości fizyczne bionanokompozytów skrobi palmy cukrowej wzmocnionej nanowłóknami celulozowymi tej palmy
Języki publikacji
EN
Abstrakty
EN
This paper aims to study the degradation rate of sugar palm nanofibrillated cellulose (SPNFCs) and sugar palm starch (SPS). SPNFCs were isolated from sugar palm fiber, while SPS is extracted from sugar palm trunk. The SPNFCs were reinforced with SPS biopolymer as biodegradable reinforcement materials of different diameter/length based on the number of passes of high pressurize homogenization process (5, 10 and 15 passes represented by SPS/SPNFCs-5, SPS/SPNFCs-10, and SPS/SPNFCs-15). These SPNFCs were incorporated into SPS plasticized with glycerol and sorbitol via solution casting method. Soil burial experiment performed on SPS and SPS/SPNFCs bionanocomposites showed that SPS was degraded more rapidly by losing 85.76% of its mass in 9 days compared to 69.89% by SPS/SPNFCs-15 bionanocomposite. The high compatibility between SPNFCs nanofiber and SPS biopolymer matrices can be observed through field emission scanning electron microscopy (FE-SEM).
PL
Zbadano szybkość degradacji nanowłóknistej celulozy wyizolowanej z palmy cukrowej (Arenga pinnata) (SPNFCs) oraz skrobi wydzielonej przez ekstrakcję z rdzenia pnia tej palmy (SPS). SPNFCs uzyskiwano z włókien palmy cukrowej, poddawanych homogenizacji pod wysokim ciśnieniem w 5, 10 lub 15 cyklach, otrzymując nanowłókna celulozy o różnej długości i średnicy. SPNFCs wprowadzano do SPS uplastycznionego mieszaniną (1 : 1) glicerolu isorbitolu. Metodą odlewania z roztworu wytwarzano błony nanokompozytowe SPS/SPNFCs-5, SPS/SPNFCs-10 i SPS/SPNFCs-15. Test glebowy procesu biodegradacji wykazał, że SPS ulegało szybszej degradacji, tracąc 85,76% swojej masy w ciągu 9 dni, w porównaniu z ubytkiem masy 69,89% w wypadku bionanokompozytu SPS/SPNFCs-15. Na podstawie analizy metodą skaningowej mikroskopii elektronowej z emisją polową (FE-SEM) stwierdzono dużą kompatybilność między nanowłóknami SPNFCs i biopolimerową osnową SPS.
Czasopismo
Rocznik
Strony
680--689
Opis fizyczny
Bibliogr. 57 poz., rys. kolor.
Twórcy
  • Universiti Putra Malaysia, Department of Chemical and Environmental Engineering, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Universiti Putra Malaysia, Institute of Tropical Forestry and Forest Products, Laboratory of Biocomposite Technology, 43400 UPM Serdang, Selangor, Malaysia
  • Universiti Putra Malaysia, Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, 432400 UPM Serdang, Selangor, Malaysia
autor
  • Universiti Putra Malaysia, Institute of Tropical Forestry and Forest Products, Laboratory of Biocomposite Technology, 43400 UPM Serdang, Selangor, Malaysia
  • Universiti Putra Malaysia, Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, 432400 UPM Serdang, Selangor, Malaysia
  • sapuan@upm.edu.my
autor
  • Universiti Putra Malaysia, Department of Aerospace Engineering, 43400 UPM Serdang, Selangor, Malaysia
  • Universiti Putra Malaysia, Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, 432400 UPM Serdang, Selangor, Malaysia
autor
  • Forest Research Institute Malaysia, Pulp and Paper Branch, 52109 Kepong, Selangor, Malaysia
autor
  • Universiti Tenaga Nasional, Institute of Power Engineering, 43000 Kajang, Selangor, Malaysia
  • Universiti Tenaga Nasional, Institute of Power Engineering, 43000 Kajang, Selangor, Malaysia
autor
  • Universiti Teknikal Malaysia Melaka, Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
Bibliografia
  • [1] Jumaidin R., Sapuan S.M., Jawaid M. et al.: International Journal of Biological Macromolecules 2017, 97, 606. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.079
  • [2] Mazani N., Sapuan S.M., Sanyang M.L. et al.: “Lignocellulose for Future Bioeconomy” Elsevier, 2019, Chapter 15, pp. 315–332. http://dx.doi.org/10.1016/B978-0-12-816354-2.00017-7
  • [3] Abral H., Dalimunthe M.H., Hartono J. et al.: Starch/Staerke 2018, 70, 1. http://dx.doi.org/10.1002/star.201700287
  • [4] Asrofi M., Abral H., Kasim A. et al.: Fibers 2018, 6, 40. http://dx.doi.org/10.3390/fib6020040
  • [5] Abral H., Basri A., Muhammad F. et al.: Food Hydrocolloids 2019, 93, 276. http://dx.doi.org/10.1016/j.foodhyd.2019.02.012
  • [6] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: IOP Conference Series: Materials Science and Engineering 2018, 368, 012006. http://dx.doi.org/10.1088/1757-899X/368/1/012006
  • [7] Halimatul M.J., Sapuan S.M., Jawaid M. et al.: Polimery 2019, 64, 422. http://dx.doi.org/10.14314/polimery.2019.6.5
  • [8] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: Carbohydrate Polymers 2018, 202, 186. http://dx.doi.org/10.1016/j.carbpol.2018.09.002
  • [9] Ilyas R.A., Sapuan S.M., Ishak M.R. et al.: “Sugar Palm Biofibers, Biopolymers, and Biocomposites” First Edition, Boca Raton, FL : CRC Press/Taylor & Francis Group, CRC Press, 2018, Chapter 10, pp. 189–220. http://dx.doi.org/10.1201/9780429443923-10
  • [10] Sapuan S.M., Ishak M.R., Leman Z. et al.: INTROPica 2017, pp. 12–13.
  • [11] Ilyas R.A., Ammar I.M., Sapuan S.M. et al.: “Sugar Palm Biofibers, Biopolymers, and Biocomposites” First Edition, Boca Raton, FL : CRC Press/Taylor & Francis Group, CRC Press, 2018, Chapter 12, pp. 246–264. http://dx.doi.org/10.1201/9780429443923-12
  • [12] Sapuan S.M., Ilyas R.A.: INTROPica 2017, pp. 5–7.
  • [13] Sanyang M.L., Ilyas R.A., Sapuan S.M., Jumaidin R.: “Bionanocomposites for Packaging Applications”, Cham: Springer International Publishing, 2018, pp. 125–147. http://dx.doi.org/10.1007/978-3-319-67319-6_7
  • [14] Radzi A.M., Sapuan S.M., Jawaid M., Mansor M.R.: Fibers and Polymers 2017, 18, 1353. http://dx.doi.org/10.1007/s12221-017-7311-8
  • [15] Ilyas R.A., Sapuan S.M., Sanyang M.L. et al.: Current Analytical Chemistry 2018, 14, 203. http://dx.doi.org/10.2174/1573411013666171003155624
  • [16] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: Journal of Materials Research and Technology 2019. http://dx.doi.org/10.1016/j.jmrt.2019.04.011
  • [17] Megashah L.N., Ariffin H., Zakaria M.R., Hassan M.A.: IOP Conference Series: Materials Science and Engineering 2018, 368, 012049. http://dx.doi.org/10.1088/1757-899X/368/1/012049
  • [18] Megashah L.N., Ariffin H., Zakaria M.R., Ando Y.: IOP Conference Series: Materials Science and Engineering 2018, 368, 012001. http://dx.doi.org/10.1088/1757-899X/368/1/012001
  • [19] Kian L.K., Jawaid M., Ariffin H., Alothman O.Y.: International Journal of Biological Macromolecules 2017, 103, 931. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.135
  • [20] Sabaruddin F.A., Paridah M.T.: IOP Conference Series: Materials Science and Engineering 2018, 368, 012039. http://dx.doi.org/10.1088/1757-899X/368/1/012039
  • [21] Sanyang M.L., Sapuan S.M., Jawaid M. et al.: BioResources 2016, 11, 4134. http://dx.doi.org/10.15376/biores.11.2.4134-4145
  • [22] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: BioResources 2017, 12, 8734. http://dx.doi.org/10.15376/biores.12.4.8734-8754
  • [23] Ilyas R.A., Sapuan S.M., Ishak M.R.: Carbohydrate Polymers 2018, 181, 1038. http://dx.doi.org/10.1016/j.carbpol.2017.11.045
  • [24] Segal L., Creely J.J., Martin A.E., Conrad C.M.: Textile Research Journal 1959, 29, 786. http://dx.doi.org/10.1177/004051755902901003
  • [25] Slavutsky A.M., Bertuzzi M.A.: Carbohydrate Polymers 2014, 110, 53. http://dx.doi.org/10.1016/j.carbpol.2014.03.049
  • [26] Sahari J., Salit M.S., Zainudin E.S., Maleque M.A.: Fibers and Textiles in Eastern Europe 2014, 22, 96.
  • [27] Jumaidin R., Sapuan S.M., Jawaid M. et al.: International Journal of Biological Macromolecules 2017, 99, 265. http://dx.doi.org/10.1016/j.ijbiomac.2017.02.092
  • [28] Zuluaga R., Putaux J.L.L., Restrepo A. et al.: Cellulose 2007, 14, 585. http://dx.doi.org/10.1007/s10570-007-9118-z
  • [29] Bhatnagar A.: Journal of Reinforced Plastics and Composites 2005, 24, 1259. http://dx.doi.org/10.1177/0731684405049864
  • [30] Habibi Y., Mahrouz M., Vignon M.R.: Food Chemistry 2009, 115, 423. http://dx.doi.org/10.1016/j.foodchem.2008.12.034
  • [31] Balakrishnan P., Sreekala M.S., Kunaver M. et al.: Carbohydrate Polymers 2017, 169, 176. http://dx.doi.org/10.1016/j.carbpol.2017.04.017
  • [32] Mandal A., Chakrabarty D.: Carbohydrate Polymers 2011, 86, 1291. http://dx.doi.org/10.1016/j.carbpol.2011.06.030
  • [33] Kaushik A., Singh M., Verma G.: Carbohydrate Polymers 2010, 82, 337. http://dx.doi.org/10.1016/j.carbpol.2010.04.063
  • [34] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: International Journal of Biological Macromolecules 2019, 123, 379. http://dx.doi.org/10.1016/j.ijbiomac.2018.11.124
  • [35] Khalil H.P.S.A., Davoudpour Y., Islam M.N. et al.: Carbohydrate Polymers 2014, 99, 649. http://dx.doi.org/10.1016/j.carbpol.2013.08.069
  • [36] Jonoobi M., Oladi R., Davoudpour Y. et al.: Cellulose 2015, 22, 935. http://dx.doi.org/10.1007/s10570-015-0551-0
  • [37] Samir O.M., Madhu S., Somashekar R.: Fibers and Polymers 2010, 11, 413. http://dx.doi.org/10.1007/s12221-010-0413-1
  • [38] Samir A., Alloin F., Sanchez J. et al.: Macromolecules 2004, 37, 1386.
  • [39] Norazlina H., Hadi A.A., Qurni A.U. et al.: IOP Conference Series: Materials Science and Engineering 2018, 342, Conf. 1. http://dx.doi.org/10.1088/1757-899X/342/1/012025
  • [40] Edhirej A., Sapuan S.M., Jawaid M., Zahari N.I.: Fibers and Polymers 2017, 18, 162. http://dx.doi.org/10.1007/s12221-017-6251-7
  • [41] Youtey N.T., Bahafid W., Sayel H., El Ghachtouli N.: “Biodegradation – Life of Science” (Eds. Chamy R., Rosenkranz F.), InTech, 2013, Chapter 11, 289. http://dx.doi.org/10.5772/56194
  • [42] Khan A., Khan R.A., Salmieri S. et al.: Carbohydrate Polymers 2012, 90, 1601. http://dx.doi.org/10.1016/j.carbpol.2012.07.037
  • [43] Noshirvani N., Ghanbarzadeh B., Fasihi H., Almasi H.: International Journal of Food Engineering 2016, 12, 37. http://dx.doi.org/10.1515/ijfe-2015-0145
  • [44] Sahari J., Sapuan S.M., Zainudin E.S., Maleque M.A.: Journal of Biobased Materials and Bioenergy 2013, 7, 90. http://dx.doi.org/10.1166/jbmb.2013.1267
  • [45] Kiatkamjornwong S., Sonsuk M., Wittayapichet S. et al.: Polymer Degradation and Stability 1999, 66, 323. http://dx.doi.org/10.1016/S0141-3910(99)00082-8
  • [46] Halimatul M.J., Sapuan S.M., Jawaid M. et al.: Polimery 2019, 64, 595. http://dx.doi.org/10.14314/polimery.2019.9.4
  • [47] Wan Y.Z., Luo H., He F. et al.: Composites Science and Technology 2009, 69, 1212. http://dx.doi.org/10.1016/j.compscitech.2009.02.024
  • [48] Fan L.T., Lee Y.H., Beardmore D.H.: Biotechnology and Bioengineering 1980, 22, 177. http://dx.doi.org/10.1002/bit.260220113
  • [49] Alvarez V.A., Ruseckaite R.A., Vázquez A.: Polymer Degradation and Stability 2006, 91, 3156. h t t p : //d x . d o i . o r g / 10 .10 16 / j . p o l y m d e g r a d -stab.2006.07.011
  • [50] Żuchowska D., Steller R., Meissner W.: Polymer Degradation and Stability 1998, 60, 471. http://dx.doi.org/10.1016/S0141-3910(97)00110-9
  • [51] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2018, 51, 234.
  • [52] Dias A.B., Müller C.M.O., Larotonda F.D.S., Laurindo J.B.: LWT – Food Science and Technology 2011, 44, 535. http://dx.doi.org/10.1016/j.lwt.2010.07.006
  • [53] Bilbao-Sainz C., Bras J., Williams T. et al.: Carbohydrate Polymers 2011, 86, 1549. http://dx.doi.org/10.1016/j.carbpol.2011.06.060
  • [54] El-Shekeil Y.A., Sapuan S.M., Khalina A. et al.: Express Polymer Letters 2012, 6, 1032. http://dx.doi.org/0.3144/expresspolymlett.2012.108
  • [55] Mansor M.R., Sapuan S.M., Zainudin E.S. et al.: Materials & Design 2014, 54, 473. http://dx.doi.org/10.1016/j.matdes.2013.08.064
  • [56] Razali N., Salit M.S., Jawaid M. et al.: BioResources, 2015, 10, 1, 1803. http://dx.doi.org/10.15376/biores.10.1.1803-1824
  • [57] Ilyas R.A., Sapuan S.M., Ishak M.R. et al.: “6th Postgraduate Seminar on Natural Fiber Reinforced Polymer Composites”, Serdang 2018, pp. 55–59.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35aa43eb-e593-44fe-b1b5-5aac4b7fc6e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.