PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shielding effectiveness of concrete in dependence of his electric properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Skuteczność ekranowania betonu w zależności od jego właściwości elektrycznych
Języki publikacji
EN
Abstrakty
EN
Due to the constant increase in the number of electronic devices, there is a long-term impact of the electromagnetic field (EMF) on human health. In addition, on the other hand, the operation of electronic devices will be affected if the radiation level is too high. Shielding is used to reduce radiation exposure. The aim of this paper is therefore to examine the shielding effectiveness (SE) of concrete depending on the change of its relative permittivity. The paper performs simulations through a waveguide in the Ansys software. The investigated material "concrete" was placed in the middle of a waveguide with a thickness of 10 cm. The frequency range is from 1.6 GHz to 5 GHz. During the experiment, the shielding of wet and dry concrete were determined.
PL
Ze względu na stały wzrost liczby urządzeń elektronicznych istnieje długofalowy wpływ pola elektromagnetycznego (PEM) na zdrowie człowieka. Ponadto, z drugiej strony, zbyt wysoki poziom promieniowania będzie miał wpływ na działanie urządzeń elektronicznych. W celu zmniejszenia narażenia na promieniowanie stosuje się ekranowanie. Celem niniejszej pracy jest zatem zbadanie skuteczności ekranowania (SE) betonu w zależności od zmiany jego przenikalności względnej. W artykule przeprowadzono symulacje za pomocą falowodu w oprogramowaniu Ansys. Badany materiał „beton” umieszczono w środku falowodu o grubości 10 cm. Zakres częstotliwości wynosi od 1,6 GHz do 5 GHz. W trakcie eksperymentu wyznaczono ekranowanie betonu mokrego i suchego.
Rocznik
Strony
204--207
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
  • Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
  • Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
Bibliografia
  • [1] Awada B., et al., Simulation of the Effect of 5G Cell Phone Radiation on Human Brain, 2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, 2018, pp. 1-6.
  • [2] Vecchia P, et al, Exposure to high frequency elektromagnetic fields, biological effects and health consequences (100 kHz to 300 GHz), INCIRP 16/2009
  • [3] Medveď, D., Temperature field distribution analysis of electrical contacts for high-current equipment, Proceedings of the IEEE 2nd International Conference and Workshop in Óbuda on Electrical and Power Engineering. New York (USA), Institute of Electrical and Electronics Engineers s. 137-141. ISBN 978-1- 7281-4358-3. DOI: 10.1109/CANDO-EPE47959.2019.9110966.
  • [4] Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz), International Commision on Non-ionizing Radiation Protection, ICNIRP Health Physics 74 (4):494-522, 1998, ICNIRP publication
  • [5] McGraw D. Jr., The measurement of the dielectric constant of three different shapes of concrete blocks, International Journal of Research and Reviews in Applied Sciences, December 2015, Vol. 25 Issue 3 – 2015, ISSN: 2076-734X, EISSN: 2076- 7366
  • [6] H. Xu, B. Li, S. Xu and H. Feng, The Measurement of Dielectric Constant of the Concrete Using Single-Frequency CW Radar, First International Conference on Intelligent Networks and Intelligent Systems, 2008, pp. 588-591, doi: 10.1109/ICINIS.2008.139.
  • [7] Kim, Ji Mun, et al., Electrical conductivity and EMI shielding effectiveness of polyurethane foam–conductive filler composites, Journal of Applied Polymer Science, vol. 134, no.5, 2017
  • [8] M. Bereš et al. Effectiveness Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources. Energies, 2021, 14.14: 4127. https://doi.org/10.3390/en14144127
  • [9] T. Vince, Tibor, et al. IoT Implementation in Remote Measuring Laboratory VMLab Analyses. J. Univers. Comput. Sci., 2020, 26.11: ISSN 1402-1421.
  • [10] J. Molnár et al. Weather Station IoT Educational Model Using Cloud Services. J. Univers. Comput. Sci., 2020, 26.11: ISSN 1495-1512.
  • [11] Rusiecki A., Calculation and measurement of shielding effectiveness of slotted enclosure with built-in conductive stirrer, Przegland Elektrotechniczny (Electrical Review), R. 88 (2012), nr. 5a, 263-266, ISSN 0033-2097
  • [12] PAVLÍK M, „Compare of shielding effectiveness for building materials, Przegląd Elektrotechniczny = Electrotechnical Review. 1919 R. 95, 2019 nr. 5, 137-140, ISSN 0033-2097
  • [13] M. Bereš and O. Slavko, "Four Leg Interleaved DC-DC Buck- Boost Converter with Modifiable Topology Using Proposed Windows Application," 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), 2019, pp. 214- 217, doi: 10.1109/MEES.2019.8896428.
  • [14] P. Liptai et al.,“Impact analysis of the electromagnetic fields of transformer stations close to residential buildings,” SGEM 2014: 14th international multidiscilinary scientific geoconference: GeoConference on Ecology, Economics, Education and Legislation: conference proceedings : pp.17- 26.june, 2014, Albena,: STEF92 Technology, pp. 355-360. - ISBN 978-619-7105-17-9.
  • [15] J. Dudas, M. Guzan, S. Gabani, et al., “Electric charge transport anomalies in holmium and thulium thin films at low temperatures,” In: Czechoslovak Journal of Physics. Vol. 54, suppl. D (2004), p. D253-D256. - ISSN 0011-4626.
  • [16] M. Bereš, D. Schweiner, I. Kováčová and A. Kalinov, "Current ripple comparison of multi and single phase Buck-boost converters," 2017 International Conference on Modern Electrical and Energy Systems (MEES), 2017, pp. 260-263, doi: 10.1109/MEES.2017.8248905.
  • [17] P. Jacko, D. Kováč, R. Bučko, T. Vince and O. Kravets, "The parallel data processing by nucleo board with STM32 microcontrollers," 2017 International Conference on Modern Electrical and Energy Systems (MEES), 2017, pp. 264-267, doi: 10.1109/MEES.2017.8248906.
  • [18] S. Tumański, “Modern magnetic field sensors – a review,” Przegląd Elektrotechniczny, Vol. 2013, No. 10, pp. 1-12, ISSN 0033-2097.
  • [19] A. Rusiecki, “Calculations and measurements of shielding effectiveness of slotted enclosure with built-in conductive stirrer,“ In:Przegland Elektrotechniczny, R. 88 NR 10b/2012, p. 328-329, ISSN 0033-2097.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35aa1712-5412-44b4-8bea-04c132a8edd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.