PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence and mechanism of Zn2+ on fluorite/calcite in sodium hexametaphosphate flotation system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fluorite and calcite have similar surface properties and natural floatability, so their flotation separation has always been a problem faced by the beneficiation industry. The key to flotation separation is the choice of depressants. Sodium hexametaphosphate (SHMP) has a good effect on fluorite calcite selective inhibition. In this paper, the effects of Zn2+ on the selective inhibition of SHMP in the flotation process of fluorite and calcite were studied through single mineral and artificial mixed mineral flotation experiments. Solution chemical calculation, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared spectroscopy (FT-IR) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) analyses investigated the mechanism of action of Zn2+, which had the most significant negative effect on the selective inhibition of SHMP. The results show that the main components of SHMP inhibiting minerals are HPO42- and H2PO4-, which can react with Ca active sites on the mineral surface to form hydrophilic Ca(H22PO4)2 and CaHPO4, while Zn2+ The presence of HPO42- in solution resulted in the formation of stable ZnHPO4 complexes, thereby weakening the inhibitory effect of SHMP on minerals.
Słowa kluczowe
Rocznik
Strony
art. no. 151676
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, Yunnan, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, Yunnan, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, Yunnan, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, Yunnan, China
autor
  • BGRIMM Technology Group, Beijing 100160, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, Yunnan, China
Bibliografia
  • CHEN, Z., REN, Z., GAO, H., ZHENG, R., JIN, Y., NIU, C., 2019. Flotation studies of fluorite and barite with sodium petroleum sulfonate and sodium hexametaphosphate. Journal of Materials Research and Technology, 8(1), 1267-1273.
  • FOUCAUD, Y., BADAWI, M., FILIPPOV, L., 2019. Comment on: Effects of crystal chemistry on sodium oleate adsorption on fluorite surface investigated by molecular dynamics simulation: Renji Zheng, Zijie Ren, Huimin Gao, Zhijie Chen, Yupeng Qian, Yubiao Li, Minerals Engineering, vol. 124, pp. 77–85, 2018. Minerals Engineering, 135, 156-159.
  • FROST, R. L., MARTENS, W. N., WAIN, D. L., HALES, M. C., 2008. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(5), 1120-1126.
  • GAGNON, J. E., SAMSON, I. M., FRYER, B. J., WILLIAMS-JONES, A. E., 2003. Compositional heterogeneity in fluorite and the genesis of fluorite deposits: insights from LA–ICP–MS analysis. The Canadian Mineralogist, 41(2), 365-382.
  • GAO, Y., GAO, Z., SUN, W., YIN, Z., WANG, J., HU, Y., 2018. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. Journal of colloid and interface science, 512, 39-46.
  • GAO, Z., GAO, Y., ZHU, Y., HU, Y., SUN, W., 2016. Selective flotation of calcite from fluorite: a novel reagent schedule. Minerals, 6(4), 114.
  • GAO, Z., WANG, C., SUN, W., GAO, Y., KOWALCZUK, P. B., 2021. Froth flotation of fluorite: A review. Advances In colloid and interface science, 290, 102382.
  • GRAYSON, J. F. (1956). The conversion of calcite to fluorite. Micropaleontology, 71-78.
  • GÜLEÇ, A., & OĞUZHANOĞLU, M. A., 2021. Fluorite mineral waste as natural aggregate replacement in concrete. Journal of Building Pathology and Rehabilitation, 6(1), 1-10.
  • JIANG, W., GAO, Z., KHOSO, S. A., GAO, J., SUN, W., PU, W., HU, Y., 2018. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite. Applied Surface Science, 435, 752-758.
  • KANG, J., HU, Y., SUN, W., GAO, Z., LIU, R., 2019. Utilization of sodium hexametaphosphate for separating scheelite from calcite and fluorite using an anionic–nonionic collector. Minerals, 9(11), 705.
  • LANDIS, W., & MARTIN, J., 1984. X‐ray photoelectron spectroscopy applied to gold‐decorated mineral standards of biological interest. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2(2), 1108-1111.
  • LI, S., GONG, D., ZHANG, W., LI, G., JUE, K., 2020. Improving Fluorite Flotation Under Low Temperature and Neutral ph Conditions. Surface Review and Letters, 27(08), 1950187.
  • PÉREZ MUÑOZ, A., CORPAS-MARTÍNEZ, J. R., MARTÍN LARA, M. Á., CALERO DE HOCES, F. M., 2020. Testing of New Collectors for Concentration of Fluorite by Flotation in Pneumatic (Modified Hallimond Tube) and Mechanical Cells.
  • PUGH, R., STENIUS, P., 1985. Solution chemistry studies and flotation behaviour of apatite, calcite and fluorite minerale with sodium oleate collector. International journal of mineral processing, 15(3), 193-218.
  • SHI, Q., ZHANG, G., FENG, Q., OU, L., LU, Y., 2013. Effect of the lattice ions on the calcite flotation in presence of Zn (II). Minerals Engineering, 40, 24-29.
  • SUN, R., LIU, D., LI, Y., WANG, D., WEN, S., 2021. Influence of lead ion pretreatment surface modification on reverse flotation separation of fluorite and calcite. Minerals Engineering, 171, 107077.
  • SUN, R., LIU, D., LIU, Y., WANG, D., WEN, S., 2021. Pb-water glass as a depressant in the flotation separation of fluorite from calcite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127447.
  • SUN, R., LIU, D., ZHANG, B., LAI, H., WEN, S,. 2021. Homogenization phenomena of surface components of fluorite and calcite. Physicochemical Problems of Mineral Processing, 57.
  • TASKER, P. (1980). The structure and properties of fluorite crystal surfaces. Le Journal de Physique Colloques, 41(C6), C6-488-C486-491.
  • TIAN, J., XU, L., YANG, Y., LIU, J., ZENG, X., DENG, W., 2017. Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors. International journal of mineral processing, 166, 102-107.
  • TOBIAS, R. S. (1979). Infrared and Raman spectra of inorganic and coordination compounds (Nakamoto, Kazuo). In: ACS Publications.
  • WANG, J., ZHOU, Z., GAO, Y., SUN, W., HU, Y., GAO, Z., 2018. Reverse flotation separation of fluorite from calcite: a novel reagent scheme. Minerals, 8(8), 313.
  • WANG, Z.-J., XU, L.-H., WU, H.-Q., HUAN, Z., MENG, J.-P., HUO, X.-M., HUANG, L.-Y., 2021. Adsorption of octanohydroxamic acid at fluorite surface in presence of calcite species. Transactions of Nonferrous Metals Society of China, 31(12), 3891-3904.
  • XU, Y., XU, L., WU, H., TIAN, J., WANG, Z., GU, X., 2020. The effect of citric acid in the flotation separation of bastnaesite from fluorite and calcite using mixed collectors. Applied Surface Science, 529, 147166.
  • XUN, L., HU, J., SHI, Q., ZHANG, G., 2021. Effects of Ca2+ and SO42-ions on fluorite flotation. Physicochemical Problems of Mineral Processing, 57.
  • YANG, Z., TENG, Q., LIU, J., YANG, W., HU, D., LIU, S., 2019. Use of NaOL and CTAB mixture as collector in selective flotation separation of enstatite and magnetite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 481-486.
  • YAO, W., LI, M., ZHANG, M., QIAN, G., CUI, R., NING, J., 2020. Effect of grinding media on the flotation behavior of fluorite using sodium oleate as a collector. Physicochemical Problems of Mineral Processing, 56.
  • ZHANG, C., WEI, S., HU, Y., TANG, H., GAO, J., YIN, Z., GUAN, Q., 2018. Selective adsorption of tannic acid on calcite and implications for separation of fluorite minerals. Journal of colloid and interface science, 512, 55-63.
  • ZHANG, H., ZHOU, F., YU, H., LIU, M. (2021). Double roles of sodium hexametaphosphate in the flotation of dolomite from apatite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 127080.
  • ZHU, W., PAN, J., YU, X., HE, G., LIU, C., YANG, S., . . . LIU, T., 2021. The flotation separation of fluorite from calcite using hydroxypropyl starch as a depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616, 126168
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35a6c9d5-1e13-4541-9ae3-cf698cf65394
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.