Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
During friction welding, temperature, stress, strain, and their variations govern welding parameters, and knowledge of them helps determine optimum parameters and ways to improve the design and manufacture of welding machines. The finite element method was used to model the titanium–tungsten pseudoalloy joint. Coupled thermomechanical model was built, the Johnson-Cook equation was used to define material properties. The calculated results of temperature distribution were in good agreement with measured ones. The numerically calculated results for the shape of the welded joint also showed a good fit with the experimental observations. The effects of friction coefficient variation with temperature are discussed.
Czasopismo
Rocznik
Tom
Strony
142--150
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Machine Technology and Automation, Wroclaw University of Technology, 51-370 Wroclaw, Lukasiewicza, Poland
autor
- Institute of Machine Technology and Automation, Wroclaw University of Technology, 51-370 Wroclaw, Lukasiewicza, Poland
Bibliografia
- [1] A. Służalec, Thermal effects in friction welding, International Journal Mechanical Science (1988) 467–478.
- [2] Z. Liwen, L. Chengdong, Q. Shaoan, Y. Yongsi, Z. Wenhui, Q. Shen, W. Jinghe, Numerical simulation of inertia friction welding process of GH4169 a analysis finite element method during friction welding, Welding Journal 5 (1998) 202–207.
- [3] L. Fu, L. Duan, The coupled deformation and heat flow alloy, Journal de Physique IV France 120 (2004) 681–687.
- [4] L. D'Alvise, E. Massoni, S.J. Walloe, Finite element modeling of the inertia friction welding process between dissimilar materials, Journal of Materials Processing Technology 125– 126 (2002) 387–391.
- [5] L. Qinghua, L. Fuguo, L. Miaoquan, W. Qiong, L. Fu, Finite element simulation of deformation behavior in friction welding of Al–Cu–Mg alloy, Journal of Materials Engineering and Performance (2006) 627–633.
- [6] J. Zimmerman, Analysis of thermomechanical and diffusion phenomena in friction bonding of ceramics with metals, using as example Al2O3-Al, Warsaw, 2006.
- [7] A. Ambroziak, Friction Welding of Refractory Metals in Liquid in Comparisons with Other Bonding Methods, Wrocław University Publishing House, 1998.
- [8] M. Malekian, Comparative analysis of heat generation in friction welding of steel bars, Acta Materialia 56 (2008) 2843–2855.
- [9] S. Nemat-Nasser, et al., Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Materialia 47 (13) (1999) 3705–3720.
- [10] B.I. Ermolaev, Thermal conductivity and electrical conductivity of materials based on titanium and its alloys at temperatures, Metallovedenie i Termieheskaya Obrabotka Metallov 12 (1974) 46–47.
- [11] I.Y. Kima, B.J. Choib, Y.J. Kimb, Y.Z. Lee, Friction and wear behavior of titanium matrix (TiB + TiC) composites, Wear 271 (2011) 1962–1965.
- [12] K.G. Budinski, Tribological properties of titanium alloys, Wear 151 (1991) 203–217. Fig. 13 – Titanium–tungsten pseudoalloy joint. Fig. 14 – Shortening of specimens. archive of civil and mechanical engineering 15 (15) 142–150 149.
- [13] A. Vairis, M. Frost, Modelling the linear friction welding of titanium blocks, Materials Science and Engineering A292 (2000) 8–17.
- [14] W. Li, T. Ma, J. Li, Numerical simulation of linear friction welding of titanium alloy: effects of processing parameters, Materials and Design 31 (2010) 1497–1507.
- [15] V.V.L Stolyarov, Sh.M Shuster, Sh. Migranov, R.Z. Valiev, Y.T. Zhu, Reduction of friction coefficient of ultrafine-grained CP titanium, Materials Science and Engineering A 371 (2004) 313–317.
- [16] J. Sorina-Müller, M. Rettenmayr, D. Schneefeld, O. Roder, W. Fried, FEM simulation of the linear friction welding of titanium alloys, Computational Materials Science 48 (2010) 749–758.
- [17] A. Ambroziak, M. Korzeniowski, P. Kustroń, M. Winnicki, Friction welding of niobium and tungsten pseudoalloy joints, International Journal of Refractory Metals and Hard Materials 29 (2011) 499–504.
- [18] http://www.webmath.com.
- [19] http://www.plansee.com.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35a4edbb-951d-43f0-8fca-fd0f7e1fbb26