PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the fractional composition of fuel from recycled plastic waste using the low-temperature pyrolysis method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plastics, despite their extensive applications across various industries, represent a significant environmental threat due to their slow degradation rate. The increasing volume of polymer waste highlights the urgent need for the development and implementation of effective recycling strategies. Catalytic pyrolysis has emerged as a promising solution for the sustainable processing of plastic waste. This study investigates the production of fuels through low-temperature pyrolysis of three widely used plastic types: polypropylene (PP), polyethylene (PE), and polystyrene (PS). The resulting pyrolysis fuels are blended with commercial diesel in proportions of 15%, 25%, and 50% and subsequently analyzed at an accredited research facility at the Maritime Academy in Szczecin, following European fuel standards. The distillation results of the fuel mixtures suggest that the blend containing 50% pyrolysis-derived fuel can be effectively utilized in internal combustion engine vehicles.
Rocznik
Strony
12--21
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Gdynia Maritime University 81-87 Morska St., 81-225 Gdynia, Poland
  • Gdynia Maritime University 81-87 Morska St., 81-225 Gdynia, Poland
Bibliografia
  • 1. Arya, S., Sharma, A., Rawat, M & Agrawal, A. (2020) Tyre pyrolysis oil as an alternative fuel: A review. Materials Today: Proceedings 28 (4), pp. 2481‒2484, doi: 10.1016/j. matpr.2020.04.797.
  • 2. ASTM (2017) ASTM D6595-17; Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emission Spectrometry. West Conshohocken.
  • 3. Baensch-Baltruschat, B., Kocher, B., Stock, F. & Reifferscheid, G. (2020) Tyre and road wear particles (TRWP) ‒ A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Science of The Total Environment 733, 137823, doi: 10.1016/j. scitotenv.2020.137823.
  • 4. Çepelioğullar, Ö. & Pütün, A.E. (2014) Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 110, pp. 363–374, doi: 10.1016/j.jaap.2014.10.002.
  • 5. Chybowski, L., Szczepanek, M., Pusty, T., Brożek, P., Pełech, R. & Borowski, P. (2025a) Evaluation of the ignition properties of fuels based on oil diesel fuel with the addition of pyrolytic oil from tires. Energies 18 (4), 860, doi: 10.3390/en18040860.
  • 6. Chybowski, L., Szczepanek, M., Pusty, T., Brożek, P., Pełech, R. & Wieczorek, A. (2025b) The properties of diesel blends with tire pyrolysis oil and their wear-related parameters. Energies 18 (5), 1057, doi: 10.3390/en18051057.
  • 7. Heidbreder, L.M., Bablok, I., Drews, S. & Menzel, C. (2019) Tackling the plastic problem: A review on perceptions, behaviors, and interventions. Science of The Total Environment 668, pp. 1077‒1093, doi: 10.1016/j.scitotenv. 2019.02.437.
  • 8. Honus, S., Kumagai, S., Fedorko, G., Molnár, V. & Yoshioka, T. (2018) Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET ‒ Part I: Production and physical properties. Fuel 221, pp. 346‒360, doi: 10.1016/j.fuel.2018.02.074.
  • 9. ISO (2003) ISO 8754:2003; Petroleum Products ‒ Determination of Sulfur Content ‒ Energy-Dispersive X-Ray Fluorescence Spectrometry. Geneva, Switzerland.
  • 10. ISO (2005) ISO 12937:2005; Petroleum Products ‒ Determination of Water ‒ Coulometric Karl Fischer Titration Method. Geneva, Switzerland.
  • 11. ISO (2008) ISO 6245:2008; Petroleum Products ‒ Determination of Ash. Geneva, Switzerland.
  • 12. ISO (2009) ISO 10307-1:2009; Petroleum Products ‒ Total Sediment in Residual Fuel Oils ‒ Part 1: Determination by Hot Filtration. Geneva, Switzerland.
  • 13. ISO (2014) ISO 10370:2014; Petroleum Products ‒ Determination of Carbon Residue ‒ Micro Method. Geneva, Switzerland.
  • 14. ISO (2022) ISO 4405:2022; Hydraulic Fluid Power ‒ Fluid Contamination ‒ Determination of Particulate Contamination by the Gravimetric Method. Geneva, Switzerland.
  • 15. ISO (2023) ISO 12156-1:2023; Diesel Fuel ‒ Assessment of Lubricity Using the High-Frequency Reciprocating Rig (HFRR) ‒ Part 1: Test Method. Geneva, Switzerland.
  • 16. ISO (2024a) ISO 8217: Products from petroleum, synthetic and renewable sources ‒ Fuels (class F) ‒ Specifications of marine fuels.
  • 17. ISO (2024b) ISO 12662:2024; Liquid Petroleum Products ‒ Determination of Total.
  • 18. Journal of Laws (2015) Dz.U. 2015 poz. 1680 Rozporządzenie Ministra Gospodarki z dnia 9 października 2015 r. w sprawie wymagań jakościowych dla paliw ciekłych. Ministry of Economy.
  • 19. Kumaravel, S.T., Murugesan, A. & Kumaravel, A. (2016) Tyre pyrolysis oil as an alternative fuel for diesel engines – A review. Renewable and Sustainable Energy Reviews 60, pp. 1678–1685, doi: 10.1016/j.rser.2016.03.035.
  • 20. Lazarevic, D., Aoustin, E., Buclet, N. & Brandt, N. (2010) Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resources, Conservation and Recycling 55 (2), pp. 246–259, doi: 10.1016/j. resconrec.2010.09.014.
  • 21. Lee, D.-J., Lu, J.-S. & Chang, J.-S. (2020) Pyrolysis synergy of municipal solid waste (MSW): A review. Bioresource Technology 318, 123912, doi: 10.1016/j.biortech. 2020.123912.
  • 22. Lewandowski, W.M., Ryms, M. & Meler, P. (2010) Termiczno-chemiczna piroliza do biopaliw ciekłych i gazowych, jako metoda podnoszenia sprawności konwersji energii biomasy. Nafta-Gaz 66 (8), pp. 675–680.
  • 23. Lotko, W. & Longwic, R. (1999) Nieustalone stany pracy silnika zasilanego paliwem rzepakowym. Radom.
  • 24. Maćkowski, J. (2003) Wpływ benzyny na zanieczyszczenia silnika (cz. 1). Paliwa, Oleje i Smary w Eksploatacji 12 (106), pp. 25–32.
  • 25. Matias, Á.A., Lima, M.S., Pereira, J., Pereira, P., Barros, R., Coelho, J.F.J. & Serra, A.C. (2019) Use of recycled polypropylene/poly(ethylene terephthalate) blends to manufacture water pipes: An industrial scale study. Waste Management 101, pp. 250–258, doi: 10.1016/j.wasman. 2019.10.001.
  • 26. Miandad, R., Rehan, M., Barakat, M.A., Aburiazaiza, A.S., Khan, H., Ismail, I.M.I., Dhavamani, J., Gardy, J., Hassanpour, A. & Nizami, A.-S. (2019) Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research 7, pp. 1–27, doi: 10.3389/ fenrg.2019.00027.
  • 27. Nizami, A.-S., Rehan, M., Ouda, O.K.M., Shahzad, K., Sadef, Y., Iqbal, T. & Ismail, I.M.I. (2015) An argument for developing waste-to-energy technologies in Saudi Arabia. Chemical Engineering Transactions 45, pp. 337–342. doi: 10.3303/CET1545057.
  • 28. Oliveux, G., Dandy, L. & Leeke, G. (2015) Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science 72, pp. 61–99, doi: 10.1016/j.pmatsci.2015.01.00.
  • 29. Palmay, P., Haro, C., Huacho, I., Barzallo, D. & Bruno, J.C. (2022) Production and analysis of the physicochemical properties of the pyrolytic oil obtained from pyrolysis of different thermoplastics and plastic mixtures. Molecules 27 (10), 3287, doi: 10.3390/molecules27103287.
  • 30. Papuga, S., Djurdjevic, M., Ciccioli, A. & Ciprioti, V. (2023) Catalytic pyrolysis of plastic waste and molecular symmetry effects: A review. Symmetry 15 (1), 38, doi: 10.3390/sym15010038.
  • 31. PKN (2019) PN-EN ISO 3405:2019-05. Petroleum and related products from natural or synthetic sources ‒ Determination of distillation characteristics at atmospheric pressure.
  • 32. PKN (2022) PN-EN 590:2022-08 Paliwa do pojazdów samochodowych. Oleje napędowe. Wymagania i metody badań.
  • 33. Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L. & Fraternali, F. (2017) Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering 115, pp. 409–422, doi: 10.1016/j.compositesb. 2016.09.013.
  • 34. Sułek, M.W., Kulczycki, A. & Małysa, A. (2009) Assessment of lubricity of mixtures of fatty acid methyl esters derived from vegetable oils in fuel oil. Tribologia (4), pp. 189–197 (in Polish).
  • 35. Szlachta, Z. (2002) Zasilanie silników wysokoprężnych paliwami rzepakowymi. Warszawa: Wydawnictwa Komunikacji i Łączności.
  • 36. Wcisło, G. (2013) Determination of the impact of FAME biocomponent on the fraction composition of diesel engine fuels. Combustion Engines 52 (3), pp. 1098–1103.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-359c5f86-679a-4efc-89e9-5cc23d12dc9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.