PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Extrudable Gassy Pyrotechnic Time Delay Compositions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A copolymer of chlorotrifluoroethylene and vinylidene fluoride was investigated to assess its viability as an oxidiser, for aluminium as the fuel, in an extrudable pyrotechnic composition for application in 3D printing. Experimental results and EKVI thermochemical modelling suggested that a fuel loading of 30 wt.% would provide the maximum energy output. DTA and TGA analysis were performed in order to ascertain processing limits. With the addition of a processing aid LFC-1® samples could be extruded successfully. Printing with the compositions had limited success. The high melt viscosity paired with the filament’s susceptibility to excessive preheating caused the print quality to be low. Delamination did not occur due to good fusion achieved during layer deposition. With minor compositional adjustments printing quality could be improvedy.
Słowa kluczowe
Rocznik
Strony
299--314
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Institute of Applied Materials, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
  • Institute of Applied Materials, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
autor
  • Institute of Applied Materials, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
  • Institute of Applied Materials, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
Bibliografia
  • [1] Danali, S.; Palaiah, R.; Raha, K. Developments in Pyrotechnics. Def. Sci. J. 2010, 60(2): 152-158.
  • [2] Ilyushin, M. A.; Tselinsky, I. V.; Shugalei, I. V. Environmentally Friendly Energetic Materials for Initiation Devices. Cent. Eur. J. Energ. Mater. 2012, 9(4): 293-327.
  • [3] Steinhauser, G.; Klapötke, T. M. “Green” Pyrotechnics: A Chemists’ Challenge. Angew. Chem., Int. Ed. 2008, 47(18): 3330-3347.
  • [4] Fronabarger, J. W.; Williams, M. D.; Sanborn, W. B.; Bragg, J. G.; Parrish, D. A.; Bichay, M. DBX-1 – A Lead Free Replacement for Lead Azide. Propellants Explos. Pyrotech. 2011, 36(6): 541-550.
  • [5] Sabatini, J. J., Koch, E.-C.; Poret, J. C.; Moretti, J. D.; Harbol, S. M. Chlorine-Free Red-Burning Pyrotechnics. Angew. Chem., Int. Ed. 2015, 54(37): 10968-10970.
  • [6] Fleischer, O.; Wichmann, H.; Lorenz, W. Release of Polychlorinated Dibenzo-pdioxins and Dibenzofurans by Setting Off Fireworks. Chemosphere 1999, 39(6):925-932.
  • [7] Dyke, P.; Coleman, P.; James, R. Dioxins in Ambient Air, Bonfire Night 1994. Chemosphere 1997, 34(5): 1191-1201.
  • [8] Steinhauser, G.; Klapötke, T. M. Using the Chemistry of Fireworks to Engage Students in Learning Basic Chemical Principles: A Lesson in Eco-friendly Pyrotechnics. J. Chem. Educ. 2010, 87(2): 150-156.
  • [9] Koch, E.-C. Metal-Fluorocarbon Based Energetic Materials. Wiley VCH, Weinheim 2012; ISBN 9783527329205.
  • [10] Fleck, T. J.; Murray, A. K.; Gunduz, I. E.; Son, S. F.; Chiu, G. T.-C.; Rhoads, J. F. Additive Manufacturing of Multifunctional Reactive Materials. Additive Manuf. 2017, 17: 176-182.
  • [11] Huang, C.; Yang, H.; Li, Y.; Cheng, Y. Characterization of Aluminum/Poly(Vinylidene Fluoride) by Thermogravimetric Analysis, Differential Scanning Calorimetry, and Mass Spectrometry. Anal. Lett. 2015, 48(13): 2011-2021.
  • [12] McCollum, J.; Pantoya, M. L.; Iacono, S. T. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion. ACS Appl. Mater. Interfaces 2015, 7(33): 18742-18749.
  • [13] Boschet, F.; Ameduri, B. (Co)polymers of Chlorotrifluoroethylene: Synthesis, Properties, and Applications. Chem. Rev. 2013, 114(2): 927-980.
  • [14] Martinez, H.; Zheng, Z.; Dolbier, W. R. Jr. Energetic Materials Containing Fluorine. Design, Synthesis and Testing of Furazan-Containing Energetic Materials Bearing a Pentafluorosulfanyl Group. J. Fluorine Chem. 2012, 143: 112-122.
  • [15] Kelly, A. L.; Brown, E. C.; Coates, P. D. The Effect of Screw Geometry on Melt temperature Profile in Single Screw Extrusion. Polym. Eng. Sci. 2006, 46(12): 1706-1714.
  • [16] Potgieter, G.; Focke, W. W.; Labuschagné, G. D.; Kelly, C. Fluoroelastomer Pyrotechnic Time Delay Compositions. J. Thermal Anal. Calorim. 2016, 126(3):1363-1370.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-359b4987-f136-4e25-8804-52c2606a85fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.