PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An extension to the Rayleigh–Gans formula: model of partially absorbing particles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Rayleigh–Gans (R–G) approximation is widely employed in various optical models to simulate the optical response of transparent media. However, the R–G concept can only succeed if the refractive index of scatterers approaches that of surrounding medium. In addition, the sizes of scattering domains are assumed to be small enough. Because of these reasons, the validity of R–G solution is fairly limited. In this paper, a semi-analytical extension to the R–G theory is introduced, resulting in an approximate formula for efficiency factor for scattering Qsca. It is proven numerically that this formula works much better than that for traditional R–G model. The computations have been made on absorbing particles with sizes comparable to or smaller than the wavelength of an incident radiation. The conventional R–G theory is either inapplicable or at least inappropriate for such particles.
Czasopismo
Rocznik
Strony
313--323
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
  • ICA, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03 Bratislava, Slovak Republic
autor
  • ICA, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03 Bratislava, Slovak Republic
autor
  • Geophysical Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 28 Bratislava, Slovak Republic
Bibliografia
  • [1] MUINONEN K., Light scattering by Gaussian random particles: Rayleigh and Rayleigh–Gans approximations, Journal of Quantitative Spectroscopy and Radiative Transfer 55(5), 1996, pp. 603–613.
  • [2] KRIEZIS E.E., A comparative study of light scattering from liquid crystal droplets, Microwave and Optical Technology Letters 35(6), 2002, pp. 437–441.
  • [3] APETZ R., VAN BRUGGEN M.P.B., Transparent alumina: A light-scattering model, Journal of the American Ceramic Society 86(3), 2003, pp. 480–486.
  • [4] JOHNS M., HANLI LIU, Limited possibility for quantifying mean particle size by logarithmic light-scattering spectroscopy, Applied Optics 42(16), 2003, pp. 2968–2971.
  • [5] WESTBROOK C.D., BALL R.C., FIELD P.R., Radar scattering by aggregate snowflakes, Quarterly Journal of the Royal Meteorological Society 132(616), 2006, pp. 897–914.
  • [6] HÅKANSSON A., TRÄGÅRDH C., BERGENSTÅHL B., A method for estimating effective coalescence rates during emulsification from oil transfer experiments, Journal of Colloid and Interface Science 374(1), 2012, pp. 25–33.
  • [7] BOHREN C.F., HUFFMAN D.R., Absorption and Scattering of Light by Small Particles, John Wiley and Sons Inc., New York, 1998.
  • [8] KRIEGER U.K., BRAUN C., Light-scattering intensity fluctuations in single aerosol particles during deliquescence, Journal of Quantitative Spectroscopy and Radiative Transfer 70(4–6), 2001, pp. 545–554.
  • [9] HAMEDANI GOLSHAN N., EFTEKHARI YEKTA B., MARGHUSSIAN V.K., Crystallization and optical properties of a transparent mullite glass ceramic, Optical Materials 34(4), 2012, pp. 596–599.
  • [10] LIN MEI, GUANG-HUA LIU, GANG HE, LI-LI WANG, JIANG-TAO LI, Controlled amorphous crystallization: An easy way to make transparent nanoceramics, Optical Materials 34(6), 2012, pp. 981–985.
  • [11] CHOWDHARY J., CAIRNS B., WAQUET F., KNOBELSPIESSE K., OTTAVIANI M., REDEMANN J., TRAVIS L., MISHCHENKO M., Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired during the MILAGRO campaign, Remote Sensing of Environment 118, 2012, pp. 284–308.
  • [12] VAN DE HULST H.C., Light Scattering by Small Particles, Dover Publications, Inc., New York, 1957.
  • [13] FRANSSENS G., DE MAZIÈRE M., FONTEYN D., Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation, Applied Optics 39(24), 2000, pp. 4214–4231.
  • [14] KOCIFAJ M., Interstellar dust extinction problem: benchmark of (semi)analytic approaches and regularization method, Contributions of the Astronomical Observatory Skalnaté Pleso 34(3), 2004, pp. 141–156.
  • [15] SHIFRIN K.S., Theoretical and Applied Problems of Light Scattering, Nauka i Technika, Minsk, 1971, pp. 231–324, (in Russian).
  • [16] WISCOMBE W.J., WARREN S.G., A model for the spectral albedo of snow. I: Pure snow, Journal of the Atmospheric Sciences 37(12), 1980, pp. 2712–2733.
  • [17] SCHIEBENER P., STRAUB J., LEVELT SENGERS J.M.H., GALLAGHER J.S., Refractive index of water and steam as function of wavelength, temperature and density, Journal of Physical and Chemical Reference Data 19(3), 1990, pp. 677–717.
  • [18] HENNING T., IL’IN V.B., KRIVOVA N.A., MICHEL B., VOSHCHINNIKOV N.V., WWW database of optical constants for astronomy, Astronomy and Astrophysics Supplement Series 136(2), 1999, pp. 405–406.
  • [19] FYMAT A.L., Analytical inversions in remote sensing of particle size distributions. 3: Angular and spectral scattering in the Rayleigh–Gans–Born approximation for particles of various geometrical shapes, Applied Optics 18(1), 1979, pp. 126–130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-359a09c3-0ca5-49b3-ab34-278e7d2de45b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.