PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Curonian Lagoon is a shallow water body connected to the Baltic Sea by a narrow navigable strait, which enables an exchange of water of different salinity. The projected climate change together with the peculiarities of mixing water will undoubtedly alter hydrological regime of this lagoon. The study uses three climate model outputs under four RCP scenarios, four sea level rise scenarios and hydrological modelling in order to project the extent to which water balance components, salinity and temperature may change in the future. In order to simulate river inflow, the Nemunas River hydrological model was created using HBV software. In general, the changes of the lagoon water balance components, salinity and temperature are expected to be more significant in 2081-2100 than in 2016-2035. It was estimated that in the reference period (1986-2005) the river inflow was 22.1 km3, inflow from the sea was 6.8 km3, salinity (at Juodkrantė) was 1.2 ppt and average water temperature of the lagoon was 9.2°C. It was projected that in 2081-2100 the river inflow may change from 22.1 km3 (RCP2.6) to 15.9 km3 (RCP8.5), whereas inflow from the sea is expected to vary from 8.5 km3 (RCP2.6) to 11.0 km3 (RCP8.5). The lagoon salinity at Juodkrantė is likely to grow from 1.4 ppt (RCP2.6) to 2.6 ppt (RCP8.5) by the end of the century due to global sea level rise and river inflow decrease. The lagoon water temperature is projected to increase by 2-6°C by the year 2100.
Czasopismo
Rocznik
Strony
378--389
Opis fizyczny
Bibliogr. 44 poz., mapy, rys., tab., wykr.
Twórcy
  • Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
  • Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
  • Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
Bibliografia
  • [1] Aleksandrov, S., Gorbunova, J., Rudinskaya, L., 2015. Effect of climate change and mollusc invasion on eutrophication and algae blooms in the lagoon ecosystems of the Baltic Sea. Geophys. Res. Abstr. 17 EGU2015-5846.
  • [2] Anthony, A., Atwood, J., August, P., Byron, C., Cobb, S., Foster, C., Fry, C., Gold, A., Hagos, K., Heffner, L., Kellogg, D. Q., Lellis-Dibble, K., Opaluch, J. J., Oviatt, C., Pfeiffer-Herbert, A., Rohr, N., Smith, L., Smythe, T., Swift, J., Vinhateiro, N., 2009. Coastal lagoons and climate change: ecological and social ramifications in U.S. Atlantic and Gulf coast ecosystems. Ecol. Soc. 14 (1), 8, 29 pp.
  • [3] Balany, F., 2011. Different ways of calculating catchment rainfall: case in Indonesia. J. Civil Eng. Forum XX (1), 1175-1182, http://dx.doi.org/10.22146/jcef.18944.
  • [4] Červinskas, E., 1972. New measurements of the Curonian Lagoon area. Works Lithuanian Acad. Sci. Geogr. Geol. 9, 45-49, (in Lithuanian).
  • [5] Chen, Y., Zuo, J., Zou, H., Zhang, M., Zhang, K., 2016. Responses of estuarine salinity and transport processes to sea level rise in the Zhujiang (Pearl River) Estuary. Acta Oceanol. Sin. 35 (5), 38-48, http://dx.doi.org/10.1007/s13131-016-0857-2.
  • [6] Church, J. A., White, N. J., 2011. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32 (4), 585-602, http://dx.doi.org/10.1007/s10712-011-9119-1.
  • [7] Coppini, G., Pinardi, N., Marullo, S., Loewe, P., 2007. Compiled for EEA by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) based on Datasets Made Available by the Hadley Center. HADISST1: http://hadobs.metoffice.com/hadisst/data/download.html. ENEA within Mediterranean Operational Oceanography Network (MOON), and Bundesamt für Seeschifffahrt und Hydrographie (BSH) within the Baltic Operational Oceanography System (BOOS).
  • [8] Dailidienė, I., Davulienė, L., 2008. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984-2005. J. Marine Syst. 74, S20-S29, http://dx.doi.org/10.1016/j.jmarsys.2008.01.014.
  • [9] Dailidienė, I., Baudler, H., Chubarenko, B., Navrotskaya, S., 2011. Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic. Oceanologia 53 (1), 293-308, http://dx.doi.org/10.5697/oc.53-1-TI.293.
  • [10] Gailiušis, B., Kovalenkovienė, M., Jurgelėnaitė, A., 1992. Water balance of the Curonian Lagoon. Power Eng. 2, 67-73.
  • [11] Gailiušis, B., Jablonskis, J., Kovalenkovienė, M., 2001. The Lithuanian Rivers. Hydrography and Runoff. Lithuanian Energy Institute, Kaunas, 792 pp.
  • [12] Gasiūnaitė, Z. R., 2000. Coupling of the limnetic and brackishwater plankton crustaceans in the Curonian Lagoon (Baltic Sea). Int. Rev. Hydrobiol. 85, 649-657, https://doi.org/10.1002/1522-2632(200011)85:5/6<653::AID-IROH653>3.0.CO;2-W.
  • [13] Gasiūnaitė, Z., Razinkovas, A., 2002. The salinity tolerance of two cladoceran species from the Curonian Lagoon: an experimental study. Sea Environ. 2 (7), 28-32.
  • [14] Grinsted, A., Jevrejeva, S., Riva, R. E. M., Dahl-Jensen, D., 2015. Sea level rise projections for northern Europe under RCP8.5. Clim. Res. 64, 15-23, http://dx.doi.org/10.3354/cr01309.
  • [15] Gudmundsson, L., Bremnes, J. B., Haugen, J. E., Engen-Skaugen, T., 2012. Technical Note: downscaling RCM precipitation to the station scale using statistical transformations — a comparison of methods. Hydrol. Earth Syst. Sci. 16, 3383-3390, http://dx. doi.org/10.5194/hessd-9-6185-2012.
  • [16] Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., Zhang, H. M., 2014. Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J. Climate 28, 911-930, http://dx.doi.org/10.1175/JCLI-D-14-00006.1.
  • [17] Huang, B., Thorne, P., Smith, T., Liu, W., Lawrimore, J., Banzon, V., Zhang, H., Peterson, T., Menne, M., 2015a. Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4). J. Climate 29, 3119-3142, http://dx.doi.org/10.1175/JCLI-D-15-0430.1.
  • [18] Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., Zhang, H. M., 2015b. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4. [Sea Surface Temperature]. NOAA National Centers for Environmental Information, http://dx.doi.org/10.7289/V5KD1VVF (accessed 23.05.17).
  • [19] Integrated Hydrological Modelling System, 2005. Manual. Version 5.8. Swedish Meteorological and Hydrological Institute, 115 pp.
  • [20] IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA, p. 1535, http://dx.doi.org/10.1017/CBO9781107415324.
  • [21] Jakimavičius, D., Kovalenkovienė, M., 2010. Long-term water balance of the Curonian Lagoon in the context of anthropogenic factors and climate change. Baltica 23 (1), 33-46.
  • [22] Jakimavičius, D., Kriaučiūnienė, J., 2013. The climate change impact on the water balance of the Curonian Lagoon. Water Resour. 40 (2), 120-132, http://dx.doi.org/10.1134/S0097807813020097.
  • [23] Jakimavičius, D., Kriaučiūnienė, J., Gailiušis, B., Šarauskienė, D., 2013. Assessment of uncertainty in estimating the evaporation from the Curonian Lagoon. Baltica 26 (2), 177-186, http://dx.doi.org/10.5200/baltica.2013.26.18.
  • [24] Kataržytė, M., Vaičiūtė, D., Bučas, M., Gyraitė, G., Petkuvienė, J., 2017. with charophytes under different salinity conditions Microorganisms associated. Oceanologia 59 (2), 177-186, http://dx.doi.org/10.1016/j.oceano.2016.10.002.
  • [25] Kriaučiūnienė, J., Jakimavičius, D., Šarauskienė, D., Kaliatka, T., 2013. Estimation of uncertainty sources in the projections of Lithuanian river runoff. Stochast. Environ. Res. Risk Assess. 27 (4), 769-784, http://dx.doi.org/10.1007/s00477-012-0608-7.
  • [26] Lillebo, A., Stalnacke, P., Gooch, G. D., 2015. Coastal Lagoons in Europe — Integrated Water Resource Strategies. IWA Publishing, 250 pp.
  • [27] Liu, W. C., Liu, H. M., 2014. Assessing the impacts of sea level rise on salinity intrusion and transport time scales in a tidal estuary, Taiwan. Water 6, 324-344, http://dx.doi.org/10.3390/w6020324.
  • [28] Liu, W., Huang, B., Thorne, P. W., Banzon, V. F., Zhang, H. M., Freeman, E., Lawrimore, J., Peterson, T. C., Smith, T. M., Woodruff, S. D., 2014. Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate 28, 931-951, http://dx.doi.org/10.1175/JCLI-D-14-00007.1.
  • [29] Lu, J., Sun, G., McNulty, S. G., Amatya, D. M., 2005. A comparison of six potential evapotranspiration methods for regional use in the Southeastern United States. J. Am. Water Resour. Assoc. 31 (6), 612-633, http://dx.doi.org/10.1111/j.1752-1688.2005.tb03759.x.
  • [30] Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., Wilbanks, T. J., 2010. The next generation of scenarios for climate change research and assessment. Nature 463 (7282), 747-756, http://dx.doi.org/10.1038/nature08823.
  • [31] Navrotskaya, S. E., Chubarenko, B. V., 2013. Trends in the variation of the sea level in the lagoons of the Southeastern Baltic. Oceanology 53 (1), 13-23, http://dx.doi.org/10.1134/S0001437012050128.
  • [32] Shaltout, M., Omstedt, A., 2014. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56 (3), 411-443, http://dx.doi.org/10.5697/oc.56-3.411.
  • [33] Stramska, M., Białogrodzka, J., 2015. Spatial and temporal variability of sea surface temperature in the Baltic Sea based on 32-years (1982-2013) of satellite data. Oceanologia 57 (3), 223-235, http://dx.doi.org/10.1016/j.oceano.2015.004.
  • [34] Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Burger, G., Hanel, M., Kriaučiūnienė, J., Loukas, A., Osuch, M., Yucel, I., 2015. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 19, 1827-1847, http://dx.doi.org/10.5194/hess-19-1827-2015.
  • [35] Teutschbein, C., Seibert, J., 2013. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci. 17, 5061-5077, http://dx.doi.org/10.5194/hess-17-5061-2013.
  • [36] Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Geogr. Rev. 38 (1), 55-94.
  • [37] Umgiesser, G., Zemlys, P., Erturk, A., Razinkova-Baziukas, A., Mėžinė, J., Ferrarin, C., 2016. Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing. Ocean Sci. 12, 391-402, http://dx.doi.org/10.5194/os-12-391-2016.
  • [38] vanVuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., Rose, S. K., 2011. The representative concentration pathways: an over-view. Climatic Change 109, 5-31, http://dx.doi.org/10.1007/s10584-011-0148-z.
  • [39] Vargas, C. I. C., Vaz, N., Dias, J. M., 2017. An evaluation of climate change effects in estuarine salinity patterns: application to Ria de Aveiro shallow water system. Estuar. Coast. Shelf Sci. 189, 33-45.
  • [40] Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Feyen, L., 2017. Extreme sea levels on the rise along Europe's coasts. Earths Future 5, 304-323, http://dx.doi.org/10.1002/2016EF000505.
  • [41] Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Markus Meier, H. E., Dippner, J. W., 2015. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas — implications for environmental monitoring. Ecol. Indic. 50, 196-205, http://dx.doi.org/10.1016/j.eco-lind.2014.10.019.
  • [42] Westervelt, D. M., Horowitz, L. W., Naik, V., Golaz, J. C., Mauzerall, D. L., 2015. Radiative forcing and climate response to projected 21st century aerosol decreases. Atmos. Chem. Phys. 15 (22), 12681-12703, http://dx.doi.org/10.5194/acp-15-12681-2015.
  • [43] Zemlys, P., Ferrarin, C., Umgiesser, G., Gulbinskas, S., Bellafiore, D., 2013. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Sci. 9, 573-584, http://dx.doi.org/10.5194/os-9-573-2013.
  • [44] Žilinskas, G., Petrokas, T., 1998. The cartometric characteristics of the northern part of Curonian Lagoon and problems of their determination. Ann. Geograph. 31, 110-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3597b1e9-2036-480a-8a0f-0f314d32ade6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.