Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research investigates the efficacy of the cloud-resolving Weather Research and Forecasting (WRF) model in reproducing convective cells associated with flash-flooding heavy rainfall near Peja, Northeast Kosovo, on June 24, 2023. Employing two distinct dynamical cores and a unique numerical setup for the Kosovo domain, numerical experiments were conducted. The study employed a triply nested WRF-ARW model with a high resolution of 3 km horizontal grid spacing, integrating conventional analysis data. Additionally, experiments using the WRF-NMM core with 3 km for a larger domain covering Southeast Europe and Kosovo domain were executed to simulate the specific event. The WRF model accurately simulated the initiation of isolated thunderstorms, convective band formation, cloud cluster, and squall line at the opportune time. While precipitation distribution was reasonably replicated, there was a slight underestimation in the amount. Hydrological analysis of precipitation, including river discharge rates provided from ECMWF ERA5 reanalysis, identified a unique storm category with intense precipitation production, registering an intensity of approximately 54.6 mm in 1 h, leading to sudden flash flooding.
Wydawca
Czasopismo
Rocznik
Tom
Strony
917--932
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
- Faculty of Civil Engineering, University of Prishtina-Hasan Prishtina, Pristina, Kosovo
autor
- Faculty of Computer Science and Engineering FINKI, Ss Cyril and Methodius University in Skopje, Skopje, North Macedonia
autor
- Faculty of Computer Science and Engineering FINKI, Ss Cyril and Methodius University in Skopje, Skopje, North Macedonia
autor
- Institute of Physics-Meteorology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, Skopje, North Macedonia
Bibliografia
- 1. Chawla I, Osuri KK, Mujumdar PP, Niyogi D (2018) Assessment of the weather research and forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrol Earth Syst Sci 22:1095-1117
- 2. Chinta S, Yaswanth SJ, Balaji C (2021) Assessment of WRF model parameter sensitivity for high-intensity precipitation events during the Indian summer monsoon. Earth Space Sci. https://doi.org/10.1029/2020ea001471
- 3. Cloke H, Pappenberger F, Thielen J, Thiemig V (2013) In operational european flood forecasting. In: Wainwright J, Mulligan M (eds) Environmental modelling: finding simplicity in complexity, 2nd edn. Wiley, London
- 4. Cluckie ID, Han D (2000) Fluvial flood forecasting. Water Environ J 14(4):270-276
- 5. Collier CG (2007) Flash flood forecasting: what are the limits of predictability? Q J R Meteorol Soc J Atmos Sci Appl Meteorol Phys Oceanogr 133(622):3-23
- 6. da Cunha Luz Barcellos P, Cataldi M (2020) Flash flood and extreme rainfall forecast through one-way coupling of wrf-SMAP models: natural hazards in Rio de Janeiro State. Atmosphere 11(8):834. https://doi.org/10.3390/atmos11080834
- 7. Dudhia J (1989) Numerical study of convection observed during the Winter Monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077-3107
- 8. Elmore KL, Stensrud DJ, Crawford KC (2002) Ensemble cloud model applications to forecast Thunderstorms. J Appl Meteorol Climatol 41:363-383. https://doi.org/10.1175/1520-0450(2002) 041%3c0363:ECMATF%3e2.0.CO;2
- 9. Emerton RE, Stephens EM, Pappenberger F, Pagano TP, Weerts AH, Wood A et al (2016) Continental and global scale flood forecast- ing systems. Wiley Interdiscip Rev Water 3(3):391-418. https://doi.org/10.1002/wat2.1137
- 10. Gao Y, Leung LR, Zhao C, Hagos S (2017) Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J Geophys Res Atmos 122:2714-2733
- 11. Gevorgyan A (2018) Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model. J Geophys Res Atmos 123:11008-11029
- 12. Giannaros C, Dafis S, Stefanidis S, Giannaros TM, Koletsis I, Oikonomou C (2023) Hydrometeorological analysis of a flash flood event in an ungauged Mediterranean watershed under an operational forecasting and monitoring context. Meteorol Appl 29:e2079
- 13. Han JY, Hong SY (2018) Precipitation forecast experiments using the weather research and forecasting (WRF) model at gray-zone resolutions. Weather Forecast 33:1605-1616
- 14. Hapuarachchi HAP, Wang QJ, Pagano TC (2011) A review of advances in flash flood forecasting. Hydrol Process 25:2771-2784
- 15. Hong SY (2010) A new stable boundary layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart J Roy Meteor Soc 136(651):1481-1496. https://doi.org/10.1002/Qj.665
- 16. Hong SY, Lee JW (2009) Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos Res 93:818-831
- 17. Janjic ZI (2003) A non-hydrostatic model based on a new approach. Meteorol Atmos Phys 82:271-285
- 18. Janjic ZI (1996) The surface layer in the NCEP Eta Model. In: Eleventh conference on numerical weather prediction, 19-23 August, Nor¬folk, VA, American Meteorological Society, Boston, pp 354-355
- 19. Kain JS, Weiss SJ, Levit JJ, Baldwin ME, Bright DR (2006) Examination of convection-allowing configurations of the WRF-NMM model for the prediction of severe convective weather: the SPC/ NSSL Spring Program 2004. Weather Forecast 21:167-181
- 20. Lee JW, Hong SY (2006) A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model. Atmosphere 16:319-332
- 21. Lee DK, Kim HR, Hong SY (1998) Heavy rainfall over Korea during 1980-1990. Korean J Atmos Sci 1:32-50
- 22. Lekhadiya HS, Jana RK (2018) Analysis of extreme rainfall events with different microphysics and parameterization schemes in the WRF model. Positioning 9:1-11
- 23. Levit JJ, Baldwin ME, Bright DR (2006) Examination of convective allowing configurations of the WRF-NMM model for the predic- tion of severe convective weather: the SPC/NSSL spring program 2004. Weather Forecast 21:167-181
- 24. Litta AJ, Mary IS, Mohanty UC, Kiran PS (2012) Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian Region. Sci World J 2012:951870
- 25. Merino A, García-Ortega E, Navarro A, Sánchez JL, Tapiador FJ (2022) WRF hourly evaluation for extreme precipitation events. Atmos Res 274:106215
- 26. Misenis C, Zhang Y (2010) An examination of the sensitivity of WRF/ Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmos Res 97:315-334
- 27. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102D:16663-16682. https://doi.org/10.1029/97JD00237
- 28. Mohanty U, Routray A, Osuri KK, Prasad SK (2012) A study on simulation of heavy rainfall events over Indian region with ARW 3DVAR modeling system. Pure Appl Geophys 169:381-399
- 29. Moya AS, Martmez-Castro D, Flores JL, Silva Y (2018) Sensitivity study on the influence of parameterization schemes in WRF_ARW model on short- and medium-range precipitation forecasts in the Central Andes of Peru. Adv Meteorol 2018:1-16. https://doi.org/10.1155/2018/1381092
- 30. Schwartz C, Glen R, Ryan S, Fossell K, Weisman M (2015) NCAR’s experimental real-time convection-allowing ensemble prediction system. Weather Forecast 30:150904135422005. https://doi.org/10.1175/WAF-D-15-0103.1
- 31. Schwartz CS, Romine GS, Weisman ML, Sobash RA, Fossell KR, Manning KW, Trier SB (2015b) A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea Forecast 30:1158-1181. https://doi.org/10.1175/WAF-D-15-0013.1
- 32. Shin HH, Hong SY (2011) Intercomparison of planetary boundary- layer parametrizations in the WRF model for a single day from CASES-99. Bound Layer Meteorol 139:261-281
- 33. Shin H, Hong SY (2015) Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon Weather Rev 143:250-271
- 34. Skamarock WC, Klemp JB (2008) A time-split non-hydrostatic atmospheric model for weather 938 research and forecasting applica- tions. J Comput Phys 227(7):3465-3485
- 35. Skamarock WC, Weisman ML, Klemp JB (1994) Three-dimensional evolution of simulated long-lived squall lines. J Atmos Sci 51:2563-2584
- 36. Skamarock WC, Klemp JB, Dudhia J et al (2008b) A description of the advanced research WRF version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. https://doi.org/10.5065/D68S4MVH
- 37. Sofiati I, Nurlatifah A (2019) The prediction of rainfall events using the WRF (weather research and forecasting) model with ensemble technique. Int Conf Ser Earth Environ Sci 374:12036
- 38. Song HJ, Sohn BJ (2018) An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean Peninsula. J Atmos Sci 54(2):225-236
- 39. Spiridonov V, Ćurić M (2019) Evaluation of Supercell storm triggering factors based on a cloud-resolving model simulation. Asia Pac J Atmos Sci 55:439-458
- 40. Spiridonov V, Baez J, Telenta JB (2020) Prediction of extreme convective rainfall intensities using a free-running 3-D sub-km-scale cloud model initialized from WRF km-scale NWP forecasts. J Atmos Solar-Terr Phys 209:105401. https://doi.org/10.1016/j.jastp.2020.105401
- 41. Spiridonov V, Ćurić M, Grčić M et al (2023) Assessment of the WRF model in simulating a catastrophic flash flood. Acta Geophys 71:1347-1359. https://doi.org/10.1007/s11600-023-01032-5
- 42. Sun C, Liang XZ (2020) Improving US extreme precipitation simulation: sensitivity to physics parameterizations. Clim Dyn 54(11-12):4891-4918
- 43. Sun J, Lee TY (2002) A numerical study of an intense quasi-stationary convection band over the Korean Peninsula. J Meteorol Soc Japan 80:1221-1245
- 44. Thielen J, Bartholmes J, Ramos M-H, De Roo A (2009a) The European flood alert system part 1: concept and development. Hydrol Earth Syst Sci 13(2):125-140. https://doi.org/10.5194/hess-13-125-2009
- 45. Thielen J, Bogner K, Pappenberger F, Kalas M, Del Medicoa M, de Rooa A (2009) Monthly-, medium-, and short-range flood warning: Testing the limits of predictability. Meteorol Appl 16(1):77- 90. https://doi.org/10.1002/met.140
- 46. Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone.
- 47. J Atmos Sci 71(10):3636-3658. https://doi.org/10.1175/JAS-D-13-0305.1
- 48. Umer Y, Ettema J, Jetten V, Steeneveld G-J, Ronda R (2021) Evaluation of the WRF model to simulate a high-intensity rainfall event over Kampala, Uganda. Water 13:873. https://doi.org/10.3390/ w13060873
- 49. Varlas G, Papaioannou G, Papadopoulos A, Markogianni V, Vardakas L, Dimitriou E (2023) Flash flood forecasting using integrated meteorological-hydrological-hydraulic modeling: application in a mediterranean river. Environ Sci Proc 26(1):35. https://doi.org/10.3390/environsciproc2023026035
- 50. Xue M, Kong F, Thomas KW, Gao J, Wang Y, Brewster K, Droegemeier KK, Kain JS, Bright SJDR, Coniglio MC, Du J (2008) CAPS real-time storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 Spring Experiment. In: Preprints, 24th conference on severe local storms, Amer. Meteor. Soc., Savannah, GA. CD-ROM 12.2
- 51. Zaldi SM, Gisen JIA, Eltahan M, Yu Q, Misbari S, Ngien SK (2022) Assessment of weather research and forecasting (WRF) physical schemes parameterization to predict moderate to extreme rainfall in poorly gauged basin. Sustainability 14(19):12624. https://doi.org/10.3390/su141912624
- 52. Zhang DL, Gao K, Parsons DB (1989) Numerical simulation of an intense squall line during 10-11 June 1985 PRE-STORM. Part I: model verification. Mon Weather Rev 117:960-994
- 53. Zheng Y, Xue M, Li B, Chen J, Tao Z (2016) Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv Atmos Sci 33:1218-1232
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-358fba67-96b2-4c26-98e8-d4faceb782fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.