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OF THE EULER EQUATION OF MOTION 

Streszczenie 
Autorzy artykułu dokonują analizy metody zastosowanej przez Cauchy’ego i Lagrange’a dla uzyskania całki 

równania ruchu Eulera. Na tej podstawie stawiają hipotezę, że całka Cauchy’ego i Lagrange’a nie jest jedyną cał-
ką równania ruchu Eulera. Autorzy artykułu przedstawiają krótką procedurę wykorzystującą twierdzenie Schwa-
rza, której zastosowanie doprowadziło do uzyskania rozwiązania równania ruchu Eulera składającego się z dwóch 
całek. Przedstawione przez autorów rozwiązanie problemu całkowania równania ruchu Eulera stanowi w istocie 
przypadek jakościowo inny, bo o większym stopniu ogólności.  

 

1. INTRODUCTION 

The first pages of this article present an analysis of the method 
used by Cauchy and Lagrange to obtain the integral of the Euler 
equation of motion. This analysis is based on a step by step recon-
struction of what the authors thought was likely course of this inte-
gral. For this reason, the article reproduces all of the steps that led 
to the well-known result. As a result of this analysis, we can assume 
that the integral of Cauchy and Lagrange may not be the only inte-
gral of the Euler equation of motion. 

In Chapters 2 and 3, the authors present the derivation of the 
Cauchy and Lagrange integral of the Euler equation of motion in 
commonly known form and the derivation of the equation of poten-
tial. The authors considered it expedient to place these patterns in 
the article. This is partially because of the possibility of spectacular 
comparing them with the results presented in the rest of the article 
without consulting the appropriate manual of fluid mechanics. 

Chapter 4 shows that the Cauchy and Lagrange integral is not 
the only integral of the Euler equation of motion. In this section, the 
authors propose a method using the Schwarz theorem. This appli-
cation resulted in a solution containing two integrals. 

One of these integrals is the Cauchy and Lagrange integral, 
and the other is the integral obtained by the authors through the use 
of the described method. It appears to be important complement to 
the Cauchy and Lagrange solution. Therefore, it appears that both 
integrals constitute a set representing the most general solution to 
the problem of the integration of the Euler equation of motion. 

Chapter 4 also presents the equation of potential, which was 
derived using the set of two integrals of the Euler equation of motion 
mentioned above. The presented equation is significantly different 
from the well-known equation of the same name. 

2. DERIVATION OF THE CAUCHY AND LAGRANGE 
INTEGRAL OF THE EULER EQUATION OF MOTION 

Let us repeat here the Cauchy and Lagrange integral derivation 
of the Euler equation of motion. In the case of one-dimensional 
unsteady flow, the Euler equation boils down to a very simple form: 

dt

du
ρ=

x

p ⋅−
∂
∂

 (2.1) 

In this embodiment, the following are true: 
1. The fluid is not in the field of mass forces unit, in a potential 

field, or in any other field. 

2. There is no concern that the movement could be a whirl, be-
cause it is a one-dimensional flow. 
Therefore, in order to effectively obtain the Cauchy and La-

grange integral, it must be assumed that the fluid is barotropic. 
Before proceeding with further transformations, we should di-

vide the parties of equation (2.1) by ρ0, i.e. the density of the fluid at 
rest. This is a formality which does not prevent the transformation of 
this equation and will not affect the final result. We do this to avoid 
the use of values appointed in the final result. 

 
We have: 

dt

du

ρ

ρ
=

ρ

p

x
⋅−









∂
∂

00

 (2.2) 

Then, we divide both sides of the equation (2.2)  by

0ρ

ρ
, while 

developing the right side: 

t

u

x

u
u=

ρ

p

x

ρ

ρ ∂
∂−

∂
∂⋅−









∂
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 0

0
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(2.3) 

In equation (2.3), we see that the operations of the partial de-
rivatives with respect to x refer to the word on the left and the first 
term on the right side of the equation; the second term on the right 
side shows the operation of the partial derivative with respect to t. 
Therefore, the direct integration of the Euler equation of motion in 
the form of (2.3) is impossible. An exception is the first term on the 
right hand side of equation (2.3), which could be presented in the 
form of:  










∂
∂

∂
∂⋅

2

2u

x
=

x

u
u  (2.4) 

Now, lets check the word on the left side of equation (2.3). If 
the fluid is barotropic, the pressure is a function only of fluid density. 
Therefore, the function is: 










00 ρ

ρ
f=

ρ

p
 (2.5) 

It will be used to transform a suitable expression on the left side 
of equation (2.3). Thus, we find the partial derivative of the expres-
sion with respect to x (2.5): 
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∂
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ρ

p

x
 (2.6) 

Now, we multiply (2.6)  the parties by
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(2.7) 

Then, we assume that: 

















⋅
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(2.8) 

where: 
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ρ
d

d
=

ρ

ρ
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(2.9) 

and 








0ρ

ρ
F is an arbitrary function of

0ρ

ρ
. 

 
After substituting (2.8) for (2.7), we obtain: 
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(2.10) 

 
And finally, we have: 
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∂
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(2.11) 

Thus, the expression on the left side of equation (2.3) is pre-

sented in the form of a partial derivative function 








0ρ

ρ
F with 

respect to x. 
The second term on the right side of equation (2.3) remains 

there. There is no problem with it, because the assumption that the 
fluid is barotropic is sufficient for the existence of the space-time 
movement velocity potential φ: 

( )tx,φ=φ  (2.12) 

In other words, making the fluid barotropic makes the Euler 
equation of motion possible to integrate. So, we have the following 
relationship [1, page 99]: 

x

φ
=u

∂
∂

 (2.13) 

We now processes the partial derivative with respect to time 
(2.13): 

tx

φ
=

t

u

∂∂
∂

∂
∂ 2

 (2.14) 

Hence we obtain: 










∂
∂

∂
∂

∂
∂

t

φ

x
=

t

u
 (2.15) 

by substituting (2.4), (2.11) and (2.15) into equation (2.3): 
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∂

∂
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t
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x
=

ρ
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F

x 2
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0

 (2.16) 

After elevating the operator
x∂

∂
before the bracket, after col-

lecting the words on the left side of the equal sign, and after order-
ing, we get: 

0
2 0

2

=
ρ

ρ
F+

u
+

t

φ

x 



















∂
∂

∂
∂

 (2.17) 

After performing the integral (2.17) (indefinite integral along the 
line t = const), we obtain: 

( )tg=
ρ

ρ
F+

u
+

t

φ









∂
∂

0

2

2
 (2.18) 

where g(t) is an arbitrary function of time. 
This is the Cauchy and Lagrange integral of the Euler equation 

of motion for the one-dimensional unsteady flow. 

3. DERIVATION OF THE EQUATION OF POTENTIAL 

Finding the partial derivative of equation (2.18) with respect to 
t, we obtain: 

( )
dt

tdg
=

ρ

ρ
F

t
+

t

u
u+

t

φ





















∂
∂

∂
∂⋅

∂
∂

0
2

2

 (3.1) 

Then, we substitute into it the equation (2.14): 

( )
dt

tdg
=

ρ

ρ
F

t
+

tx

φ
u+

t

φ
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∂∂
∂⋅

∂
∂

0

2

2

2

 (3.2) 

Subsequently, taking into account that according to (2.13), the 
following holds: 

∂u
∂ x

= ∂
2
φ

∂ x2
 

(3.3) 

We find the partial derivative of the equation (2.18) with respect 
to x: 
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∂∂
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 (3.4) 

Then, we multiply the parties of (3.4) by u:  
  

0
0

2

22

=
ρ

ρ
F

x
u+

x

φ
u+

xt

φ
u 2


















∂
∂⋅

∂
∂⋅

∂∂
∂⋅  (3.5) 

Thus, we take the prepared equations 3.2 and 3.5 and add 
pages, which yields: 

( )
dt

tdg
=

ρ

ρ
F

t
+

ρ

ρ
F

x
u

+
t

φ
+

tx

φ
+

x

φ
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∂
∂
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(3.6) 
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Given that the fourth and fifth term on the left side of equation 

(3.6) represent a substantial derivative of the function 








0ρ

ρ
F , we 

can make the equation significantly shorter: 

( )
dt

tdg
=

ρ

ρ
F

dt

d
+

t

φ
+

tx

φ
+

x

φ
u
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∂

∂∂
∂⋅

∂
∂⋅
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2

22

2

2
2 2u

 

(3.7) 

Let us now put the fourth word in (3.7) in a more desired form. 
We will start from the action: 









⋅




























000 ρ

ρ

dt

d

ρ

ρ
F'=

ρ

ρ
F

dt

d
 (3.8) 

If in (3.8) we have to deal with substantial derivatives, we can 
use the equation of continuity: 

x

u

ρ

ρ
=

ρ

ρ

dt

d

∂
∂⋅








−









00

 (3.9) 

Substituting them according to equation (3.8): 

x

u

ρ

ρ

ρ

ρ
F'=

ρ

ρ
F

dt

d

∂
∂⋅








⋅







−





















000

 (3.10) 

Subsequently, in equation (3.10), we substitute equation (3.3): 

2

2
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ρ

ρ

ρ
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ρ
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F
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d

∂
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⋅
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 (3.11) 

 
But according to equation (2.8), we have: 

















⋅








000 ρ

ρ
f'=

ρ

ρ

ρ

ρ
F'  (3.12) 

Substituting equation (3.12) for (3.11), we obtain: 
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ρ
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d

∂
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 (3.13) 

Substituting equation (3.13) into the equation (3.7), we obtain: 

( )
dt

tdg
=

x

φ

ρ

ρ
f'

t

φ
+

tx

φ
+

x

φ
u

2

2

0
2
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2

2
2 2u

∂
∂⋅








−

∂
∂

∂∂
∂⋅

∂
∂⋅

 
(3.14) 

After arranging the equation, (3.14) finally becomes its final 
form: 

( )
dt

tdg
=

t

φ
+

tx

φ
+

x

φ

ρ

ρ
f'u

2
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2

2

0

2 2u
∂
∂

∂∂
∂⋅

∂
∂⋅




















−

 

(3.15) 

This is a partial differential equation of second quasi-linear or-
der, which is satisfied by the velocity potential φ. This equation is 
called the equation of potential. Note that by finding the substantial 
derivative of both sides of (2.5), we get: 









⋅
















000 ρ

ρ

dt

d

ρ

ρ
f'=

ρ

p

dt

d
 (3.16) 

Then do we get: 










0ρ

ρ
f'=

dρ

dp
 (3.17) 

And because: 

dp
dρ

=c2

 
(3.18) 

where c is the local speed of sound; Thus, it appears that: 

2c=
ρ

ρ
f' 









0

 (3.19) 

Using this in equation (3.15), we obtain: 

( ) ( )
dt

tdg
=

t

φ
+

tx

φ
+

x

φ
cu

2

22

2

2
22 2u

∂
∂

∂∂
∂⋅

∂
∂⋅−  (3.20) 

Assuming that the arbitrary function (2.5) expresses the pres-
sure dependence of the fluid’s density, the equation (3.15) is the 
most general and formally mathematically correct. According the 
actions in (3.16), (3.17), (3.18) and (3.19) leading to the equation 
(3.20) clearly show that this case concerns isentropic pressure 
depending on the density of the fluid: 

k

ρ

ρ

ρ

p
=

ρ

p








⋅

00

0

0

 (3.21) 

This means that equation (3.20) is not only formal mathemati-
cally correct, but it also describes physically possible movement. 

4. OBTAINING THE INTEGRAL OF THE EULER EQUA-
TION OF MOTION USING THE SCHWARZ THEOREM 

Cited in Chapter 2 of the Cauchy and Lagrange integral deriva-
tion of the Euler equation of motion is mostly a repetition of the 
output contained in many textbooks of fluid mechanics (in example 
in [1]). It seems that contemporary authors thought they could re-
peat the historical course of the authors of the integral of the Euler 
equation of motion, i.e. Augustus Cauchy and Joseph Lagrange, by 
presenting reasoning leading to the integral in their textbooks.  

With full respect for both eminent mathematicians and the 
recognition accuracy, we believe there is a different, but somewhat 
simpler way to integrate Euler equation of motion, using the 
Schwarz theorem1. This claim relates to (in the case considered 
here) equal mixed second partial derivatives of the function (two 
independent variables), expressing the physical size of the flow of 
fluid in space-time of flow.  

To demonstrate this, let us substitute compounds (2.4) and 
(2.11) into equation (2.3): 

t

uu

x
=

ρ

ρ
F

x ∂
∂−









∂
∂−

















∂
∂

2

2

0

 (4.1) 

Then, we transform equation (4.1) as follows: 


















∂
∂−

∂
∂

0

2

2 ρ

ρ
F+

u

x
=

t

u  (4.2) 

Now, we write down the following relationship between the se-
cond derivatives of the mixed function φ (2.12), which expresses the 
Schwarz theorem: 

∂
2
φ

∂ x∂ t
= ∂

2
φ

∂ t ∂ x  
(4.3) 

Or, for a better effect, we may write equation (4.3) as follows: 










∂
∂

∂
∂










∂
∂

∂
∂

t

φ

x
=

x

φ

t
 (4.4) 

                                                 
1 August Cauchy (1789-1857) and Joseph Lagrange (1736-1813) are not able to use 
the theorem of Hermann Schwarz (1843-1921), for obvious reasons. 
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If we now compare the left and right sides of equations (4.4) 
and (4.2) respectively, we obtain the following equations: 

t

u
=

x

φ

t ∂
∂
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∂

∂
∂
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∂

0

2

2 ρ

ρ
F+

u

x
=

t

φ

x
 

(4.5) 
 
 

(4.6) 

 
They then integrate over, yielding: 

( )xh+u=
x

φ

∂
∂

 

( )tg+
ρ

ρ
F+

u
=

t

φ




















−

∂
∂

0

2

2
 

(4.7) 
 
 

(4.8) 

In the above two integrals, the functions h(x) and g(t) are arbi-
trary functions. 

It turns out that the integration of the Euler equation of motion 
using the Schwarz theorem yields two integrals, (4.7) and (4.8), 
expressing the partial derivatives of the velocity potential φ. The 
second integral (4.8) is, of course, identical to the integral of the 
Cauchy and Lagrange equation. However, the first integral (4.7), 
somehow obtained by the procedure, could replace the defining 
equation of velocity potential (2.13), which is a part of historical 
research. However, with its presence, the equations (4.7) and (4.8) 
represent a qualitatively different case because of the greater de-
gree of generality. 

 
Repeating the procedure mentioned in section 3, i.e. making 

the appropriate operations on equations (4.7) and (4.8) using 
(3.1)...(3.15) the equation of potential for the general case can be 
derived: 

Transforming (4.9) using (3.16) ... (3.20) we get the equation of 
potential for the isentropic case: 

These equations are significantly different from the formulas 
(3.15) and (3.20), which are a result of the classical solution to the 
Cauchy and Lagrange integral. 

CONCLUSIONS 

It follows that the solution of the integral of the Euler equation 
of motion created by Cauchy and Lagrange is a special case of the 
proposed solutions and occurs with the function h(x)≡0 in the inte-
gral (4.7). 
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