PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the selection of the coarsest size class in flotation rate characterizations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies size-by-size batch flotation kinetics for the separation of Cu at particle sizes +75 μm, investigating the responses in the -150/+75 μm, -212/+150 μm, -300/+212 μm, -355/+300 μm and +355 μm size fractions. The kinetic results were analyzed to identify classes limited by the maximum achievable recovery or low flotation rates. Combinations of these classes were investigated, emulating the selection of the coarsest size in a kinetic study. The impact of compositing size classes was discussed, emphasizing implications in the identification of difficult-to-float components. The -212/+75 μm classes reached steady recoveries at long flotation times, whereas the -355/+212 μm classes presented sustained increasing recoveries at extended flotation times. Flotation rate distributions in the -212/+75 μm classes exhibited mound-shaped distributions, indicating low fractions of rate constants close to zero (R∞-limited case). Conversely, the -355/+212 μm classes presented reverse J-shaped distributions, with a high fraction of valuable minerals with flotation rates close to zero (rate-limited case). Combining several size classes in the definition of the coarsest size fraction in kinetic characterizations proved to hide the flotation patterns of the less massive constituents (+212 μm classes). The +75 μm and +150 μm cumulative retained classes trended towards steady recoveries, consistently leading to mounded flotation rate distributions. This study highlighted the need for reliable methodologies to select size fractions in kinetic characterizations, as their arbitrary definitions may lead to a misinterpretation of the mineral losses when compositing classes with different flotation responses.
Rocznik
Strony
art. no. 176950
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
  • Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
  • Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
  • Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
  • Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
autor
  • Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
  • Automation and Supervision Centre for Mining Industry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
Bibliografia
  • AHMED, N., JAMESON, G. J., 1985. The effect of bubble size on the rate of flotation of fine particles. Int. J. Miner. Process. 14(3), 195-215.
  • ALVAREZ-SILVA, M., VINNETT, L., LANGLOIS, R., WATERS, K.E., 2016. A comparison of the predictability of batch flotation kinetic models. Miner. Eng. 99, 142-150.
  • AMINI, E., XIE, W., BRADSHAW, D. J., 2016. Enhancement of scale up capability on AMIRA P9 flotation model by incorporating turbulence parameters. Int. J. Miner. Process. 156, 52-61.
  • BU, X., XIE, G., CHEN, Y., NI, C., 2017(a). The order of kinetic models in coal fines flotation. Int. J. Coal Prep. Util. 37(3), 113-123.
  • BU, X., XIE, G., PENG, Y., GE, L., NI, C., 2017(b). Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochem. Probl. Miner. Process. 53(1), 342-365.
  • CRAWFORD, R., RALSTON, J., 1988. The influence of particle size and contact angle in mineral flotation. Int. J. Miner. Process. 23, 1-24.
  • FENG., D., ALDRICH, C., 1999. Effect of particle size on flotation performance of complex sulphide ores. Miner. Eng. 12, 721-731.
  • GARCIA-ZUÑIGA, H., 1935. Flotation recovery is an exponential function of time. Bol. Soc. Mac. Min. 47, 83.
  • GAUDIN, A.M., GROH. J.O., HENDERSON, H.B., 1931. Effect of particle size in flotation. Am. Inst. Min. Metall. Eng. Tech. Publ. 414, 3-23.
  • HARRIS, C.C., CHAKRAVARTI, A., 1970. Semi-batch flotation kinetics: Species distribution analysis. Trans. AIME. 247, 162-172.
  • HUBER-PANU, I., ENE-DANALACHE, E., COJOCARIU, D.G., 1976. Mathematical models of batch and continuous flotation, Flotation--A. M. Gaudin Memorial. AIME, Inc., New York, USA, pp. 675-724.
  • IMAIZUMI, T., INOUE, T., 1963. Kinetic considerations of froth flotation. Proc. Sixth Int. Congr. Miner. Process., Cannes, 581-593.
  • JAMESON, G. J., EMER, C., 2019. Coarse chalcopyrite recovery in a universal froth flotation machine. Miner. Eng. 134, 118-133.
  • KAPUR, P.C., MEHROTRA, S.P., 1973. Estimation of the flotation rate distributions by numerical inversion of the place transform. Chem. Eng. Sci. 29, 411-415.
  • LANGE, A.G., SKINNER, W.M., SMART., R. ST.C., 1997. Fine: Coarse particle interactions and aggregation in sphalerite flotation. Miner. Eng. 10, 681-693.
  • LOTTER, N.O., 1995. A Quality Control Model for the Development of High-Confidence Flotation Test Data. University of Cape Town.
  • POLAT, M., CHANDER, S., 2000. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. Int. J. Miner. Process. 58, 145-166.
  • POLAT, M., POLAT, H., 2023. A phenomenological kinetic flotation model: Distinct Time-Variant floatability distributions for the pulp and froth materials. Miner. Eng. 201, 108217.
  • TAO, D., 2005. Role of bubble size in flotation of coarse and fine particles- a review. Sep. Sci. Technol. 39, 741-760.
  • TRAHAR, W.J., 1981. A rational interpretation of the role of particle size in flotation. Miner. Eng. 8, 289-327.
  • VINNETT, L., GRAMMATIKOPOULOS, T., EL-MENSHAWY, A.H., WATERS, K.E., 2022. Justifying size-by-size flotation rate distributions from size-by-association kinetic responses. Pow. Technol. 395, 168-182.
  • VINNETT, L., MARION, C., GRAMMATIKOPOULOS, T., WATERS, K.E., 2020. Analysis of flotation rate distributions to assess erratic performances from size-by-size kinetic tests. Miner. Eng. 149, 106229.
  • VINNETT, L., YIANATOS, J., & FLORES, S., 2016. On the mineral recovery estimation in Cu/Mo flotation plants. Miner. Metall. Process., 33, 97-106.
  • VINNETT, L., WATERS, K. E., 2020. Representation of kinetics models in batch flotation as distributed first-order reactions. Minerals, 10(10), 913.
  • WOODBURN, E.T., LOVEDAY, B.K., 1965. The effect of variable residence time on the performance of a flotation system. J. South Afr. Inst. Min. Metall. 65, 612-628.
  • YIANATOS, J., BERGH, L., VINNETT, L., CONTRERAS, F., DIAZ, F., 2010. Flotation rate distribution in the collection zone of industrial cells. Miner. Eng. 23, 1030-1035.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-358c6737-1b84-4ce0-a849-673968124466
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.