PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Promising Way to Dispose of Fatty Waste by Hydrolysis and Study of the Conditions for Immobilization of Rhizopus Japonicus Lipase on Carriers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hydrogenation process in oil and fat production is accompanied by the formation of a large amount of waste, the majority of which includes spent catalysts and spent sorbents. The bioconversion of lipids through the use of immobilized enzyme preparations expands the possibilities and is one of the most powerful resource potentials of environmental biotechnology. The adsorption methods are most effective, which is due to the ease of the binding process, the low cost of the carrier and the absence of toxic substances. Immobilization of adsorption provides a large surface area, which is important for the lipolytic enzymes performing catalysis at the interface. In most cases, adsorption slightly reduces the activity of lipases and, which is extremely important, does not affect their specificity. It was shown that the use of activated carbon with a grain size of 2.0–2.8 as a carrier for immobilization of lipase, leads to maximum preservation of the initial lipolytic activity. The weight ratio of carrier/ enzyme, optimal in terms of preservation of lipolytic activity, was 1 g of biopolymer carrier per 500 mg of lipase (1: 0.5) with preservation of 36.33% of the initial activity of the native enzyme. From the obtained experimental data, it follows that the rational conditions for the immobilization of Rhizopus japonicus is GM 1.5, temperature 25°С, duration of immobilization 15 minutes, the size of particles of activated carbon as a matrix is 2.0–2.8 mm. The lipolytic activity of the enzyme immobilized under these conditions is preserved by more than 30% compared with the native one, which is a high indicator of the preservation of activity.
Rocznik
Strony
201--208
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Odessa National Academy of Food Technologies, Ukraine
  • Odessa National Academy of Food Technologies, Ukraine
autor
  • Odessa National Academy of Food Technologies, Ukraine
  • Odessa National Economic University, Ukraine
  • Lviv Polytechnic National University, Ukraine
Bibliografia
  • 1. Arutyunyan N.S., Kornena E.P., Nesterova E.A. 2004. Refining of oils and fats: Theoretical foundations, practice, technology, equipment. GIORD. SPb. (in Russian)
  • 2. EU-Ukraine Association Agreement. (2014). Association Agreement between the European Union and the European Atomic Energy Community and their member states, of the one part. Official Journal of the European Union. [Electronic resource]. Retrieved from http://trade.ec.europa.eu/doclib/docs/2016/november/tradoc_155103.pdf. (in English)
  • 3. Cherno N.K., Krusir G.V., Rusieva Ya.P. 2010a. Complex formation as a method of immobilization of soy inhibitors. Food science and technology, 1, 24–27. (in Ukrainian)
  • 4. Cherno N.K., Krussir G.V., Kovalenko O.V. 2009a. Biocorrectors of etching processes Monograph. Astroprint, Odessa (in Ukrainian)
  • 5. Cherno N.K., Krussir G.V., Sevast’yanova O.V., Yashkyna V.V. 2010b. Biotechnology of BAD with the inclusion of biocorrectors of digestion processes. Scientific Works “Food science, engineering and technologies”, 1, 334–338. (in Russian)
  • 6. Cherno N.K., Krussir G.V., Yashkyna V.V. 2009b. Plant complexes that inhibit the action of pancreatic lipase, and their use. Cereal products and feed, 34 (2), 13–17. (in Russian)
  • 7. Council Directive 75/442/EEC of 15 July 1975 on waste. (25.07.1975). Official Journal, L 194, 39–41. Available: http://eur-lex.europa.eu/eli/dir/1975/442/oj
  • 8. Yu.V. Samoilova, K.N. Sorokina, M.A. Nuriddinov, A.S. Rozanov. 2013. Development of a biocatalyst for the transesterification of edible fats using immobilized lipase enzymes. High technology in modern science and technology, 119–123. (in Russian)
  • 9. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. (22.11.2008). Official Journal, L 312, 3–30. Available: http://eur-lex. europa.eu/eli/dir/2008/98/oj
  • 10. Kovaleva T.A. et al. 2008. Immobilization of hydrolytic enzymes on anion exchangers Sorption and chromatographic processes,. 8(6), 1035–1041. (in Russian)
  • 11. Kates M. 1975. The technique of lipidology. Isolation, analysis and identification of lipids, Mir, Moscow (in Russian)
  • 12. Krussir G.V et al. 2014. Technologies of food waste management: textbook. tool. for universities. Astroprint, Odessa (in Ukrainian)
  • 13. Krussir G.V. 2010. Forecasting of effective methods of stabilization of plant biocorrector., Cereal products and feed, 38( 2), 15–18. (in Ukrainian)
  • 14. Zagorodniy Ya.O. et al. 2012. Methods of utilization of bleaching clays. Energy: Economics, Technologies, Ecology, 1, 97–102. (in Ukrainian)
  • 15. Nekrasov P.O., Plakhotna Yu.M., Nekrasov O.P. 2011. Investigation of the effectiveness of enzymes with respect to hydrolytic fission of fats. Bulletin of the National Technical University KPI, 31, 3–10. (in Ukrainian)
  • 16. O’Brien R. 2007. Fats and Oils. Production, composition, properties, application. Profession, SPb. (in Russian)
  • 17. Paiva A.L., Balcão V.M., Malcata F.X. 2000. Kinetics and mechanisms of reactions catalyzed by immobilized lipases, Enz. Microb. Technol. 1; 27(3–5), 187–204. doi: https://doi.org/10.1016/S0141–0229(00)00206–4
  • 18. Pieskova L.O., Dekhtiarenko N.V. 2014. Enzyme lipase: analysis of uses, producers, production methods. Scientific reports of the National Technical University of Ukraine KPI, 3, 63–72. (in Ukrainian)
  • 19. Polygalina G.V. 2003. Determination of enzyme activity. Directory. DeLi print, Moscow (in Russian)
  • 20. Ramos E.Z., Miotti Jr R.H., de Castro, P.F., Tardioli, P.W., Mendes A.A., Fernandéz-Lafuente R., Hirata D.B. 2015. Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions, J. Mol. Catal. B: Enz. 118, 43. doi: https://doi.org/10.1016/j.molcatb.2015.05.009
  • 21. Register of waste generation, treatment and disposal facilities. The official website of Vinnitsa Regional State Administration. URL: http://www.vin.gov.ua/dep-apr/administratyvni-posluhy/629-diiuchi-dozvoly-reiestry/20545-reestr-ouv-2018 (in Ukrainian)
  • 22. Sklyar V., Krussir G., Lebedenko T., Khomich G., Kovalenko I. 2019. Research Study of the Conditions of Wastes Lipolysis Lipid Fraction. Journal of Ecological Engineering, 20, 3, 152–156. DOI: 10.12911/22998993/99745
  • 23. Romanovskaya T.I., Romanovsky I.Ya. 2009. The regeneration of refractory clay in oil production. Scientific works ONAFT, 2, 36, 55–57. (in Ukrainian)
  • 24. Skliar V., Krusir G., Zakharchuk V., Kovalenko I., Shpyrko T. 2019. Investigation of the fat fraction enzymatic hydrolysis of the waste from production of hydrogenated fat by the lipase Rhizopus japonicus. Food science and technology, 13,1, 27–33. DOI: http://dx.doi.org/10.15673/fst.v13i1.1332
  • 25. Site Association «Ukroliaprom» Retrieved from http://www.ukroilprom.org.ua/?q=node/205 (in Ukrainian)
  • 26. Gunasekaran V. and Das D., 2005. Lipase fermentation: Progress and prospects, Indian J. Biotechnol, 4, 437–445.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-358039bd-b65c-4bda-806a-ffe6b9594297
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.