PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Testing of Al-Si12/SiC Interpenetrating Composites (IPC) in Uniaxial Tension and Compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical response of interpenetrating co-continuous composite Al-Si12/SiC3D was described for uniaxial tension and compression. The internal structure of the IPC was examined by optical microscopy and micro-CT. The apparent density and Young’s modulus were assessed theoretically and experimentally. Uniaxial tensile tests were performed using the prismatic samples of dimensions 1 mm × 2 mm × 30 mm. Cylindrical samples of diameters ϕ = 5 mm and height h = 10 mm were subjected to quasi-static uniaxial compressive loading. During tests, the side surfaces of the specimen were observed using a digital image correlation system (DIC) to find strain fields and to monitor the surface cracks development in the complex internal microstructure of the IPC. The analyzed two-phase ICP was manufactured using ceramic foam SiC infiltrated by alloy Al-Si12. This material finds application in cosmic, airplane, or automobile industries, due to their excellent tribological, heat distribution, and ballistic properties. Obtained results show different modes of microcracking and fracture of cylindrical and prismatic samples. They indicate the substantial influence of the ceramic skeleton on the behavior of the IPC under uniaxial states of loading. Different modes of damage related to the tension or compression loading were described in detail. The results can find application in the designing process of modern co-continuous IPCs and further development of the numerical models of degradation processes.
Twórcy
  • Lublin University of Technology, 20-618 Lublin, 38D Nadbystrzycka Str., Poland
  • Lublin University of Technology, 20-618 Lublin, 38D Nadbystrzycka Str., Poland
  • Łukasiewicz Research Network, Institute of Microelectronics and Photonics, 02-668 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
Bibliografia
  • [1] T. Fett, D. Munz, Mechanical Properties, Failure Behaviour, Materials Selection, Ceramics, Springer, Berlin, Heidelberg, New York (1999). DOI: https://dx.doi.org/10.1007/978-3-642-58407-7
  • [2] R.W. Rice, Mechanical Properties of Ceramics and Composites - Grain and Particle Effects, New York, Basel, Marcel Dekker, Inc. (2000). ISBN: 0-8247-8874-5
  • [3] W. Krenkel (ed.), Ceramic matrix composites. Fiber-reinforced ceramics and their applications, Wiley-VHC (2010).
  • [4] L. Li High temperatures mechanical behavior of ceramic matrix composites, Wiley-VHC GmbH (2010). ISBN: 3527349030.
  • [5] J.P. Davim (ed.), Ceramic matrix composites, de Guyter GmbH (2016). ISBN: 3110352842.
  • [6] L.A. Gömze, L.N. Gömze, Alumina-based hetero-modulus ceramic composites with extreme dynamic strength - phase transformation of Si3N4 during the high-speed collision with metallic bodies, Ĕpitöanyag: JSBCM. 61, 38-42 (2009). DOI: https://dx.doi.org/10.14382/epitoanyag-jsbcm.2009.7
  • [7] M. Szutkowska, M. Podsiadło, T. Sadowski, P. Figiel, M. Boniecki, T. Polczyk, A novel approach by spark plasma sintering to the improvement of mechanical properties of titanium carbonitride-reinforced alumina ceramic, Molecules 26 1344 (2021). DOI: https://doi.org/10.3390/molecules26051344
  • [8] M. Boniecki, T. Sadowski, P. Gołębiewski, H. Węglarz, A. Piątkowska, M. Romaniec, K. Krzyżak, K. Łosiewicz, Mechanical properties of alumina/zirconia composites, Cer. Int. 46, 1033-1039 (2020). DOI: https://doi.org/10.1016/j.ceramint.2019.09.068
  • [9] T. Sadowski, S. Samborski, Modelling of porous ceramics response to compressive loading, J. Am. Cer. Soc. 86, 2218-2221 (2003). DOI: https://dx.doi.org/10.1111/j.1151-2916.2003.tb03637.x
  • [10] T. Sadowski, S. Samborski, Prediction of mechanical behaviour of porous ceramics using mesomechanical modelling, Comp. Mat. Sci. 28, 512-517 (2003). DOI: https://doi.org/10.1016/j.commatsci.2003.08.008
  • [11] Sadowski, T., Modelling of semi-brittle ceramics behavior under compression, Mech. Materials, 18, 1-16 (1994). DOI: 10.1016/0167-6636(94)90002-7
  • [12] T. Sadowski, Gradual degradation in two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012) 209-211. DOI: https://doi.org/10.1016/j.commatsci.2012.01.034
  • [13] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression, Comp. Mater. Sci. 43, 75-81 (2008). DOI: https://doi.org/10.1016/j.commatsci.2007.07.041
  • [14] H.D. Espinoza, P.D. Zavattieri, A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation, Mech. Mater. 35, 333-364 (2003). DOI: https://doi.org/10.1016/S0167-6636(02)00285-5
  • [15] H.D. Espinoza, P.D. Zavattieri, A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples, Mech. Mater. 35, 365-394 (2003). DOI: https://doi.org/10.1016/S0167-6636(02)00287-9
  • [16] D. Ghosh, M. Banda, S. Akurati, H. Kang, O. Fakharizadeh, On the brittle fracture characteristics of lamella walls of ice-templated sintered alumina scaffolds and effects of platelets, Scripta Mater. 138, 139-144 (2017). DOI: https://doi.org/10.1016/j.scriptamat.2017.05.049
  • [17] T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Comp. Struct. 143, 388-394 (2016). DOI: https://doi.org/10.1016/j.compstruct.2016.02.022
  • [18] T. Sadowski, G. Golewski, Effect of aggregate kind and graining on modelling of plain concrete under compression, Comp. Mat. Sci. 43, 119-126 (2008). DOI: https://doi.org/10.1016/j.commatsci.2007.07.037
  • [19] E. Postek, T. Sadowski, Impact model of the Al2O3/ZrO2 composite by peridynamics, Compos. Struct. 271, 114071 (2021). DOI: https://doi.org/10.1016/j.compstruct.2021.114071
  • [20] A. Makholouf, D. Scharnweber, Handbook of nanoceramics and nanocomposite coatings and materials, Elsevier (2015).
  • [21] M. Winterer, Nanocrystalline ceramics, synthesis and structure, Springer, Berlin, (2002). DOI: https://doi.org/10.1007/978-3-662-04976-1
  • [22] C.C. Koch, I.A. Ovid’ko, S. Seal, S. Veprek, Structural nanocrystalline materials: fundamentals and applications, Cambridge, Cambridge Univ. Press, 2007. DOI: https://doi.org/10.1002/anie.200685538
  • [23] B. Saleh, J. Jiang, R. Fathi, T. Al-Habibi, Q. Xu, L. Wang, D. Song, A. Ma, 30 years of functionally graded materials: An overview of manufacturing methods, applications and future challenges, Compos. Part B 201, 108376 (2020). DOI: https://doi.org/10.1016/j.compositesb.2020.108376
  • [24] E. Pazera, J.Jędrysiak, Thermoelastic phenomena in transversally graded laminates, Comp. Struct. 134, 663-671 (2015). DOI: https://doi.org/10.1016/j.compstruct.2015.08.081
  • [25] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comput. Mat. Sci. 52, 293-297 (2012). DOI: https://doi.org/10.1016/j.commatsci.2011.02.027
  • [26] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comput. Mat. Sci. 50, 1326-1335 (2011). DOI: https://doi:10.1016/j.commatsci.2010.05.032
  • [27] V. Ivanov, T. Sadowski, D. Pietras, Crack propagation in the functionally graded strip under thermal shock, Eur. Phys. J. Special Topics 222, 1587-1595 (2013). DOI: https://doi.org/10.1140/epjst/e2013-01947-3
  • [28] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM Strip, Int. J. Fract. 127, L135-L140 (2004).
  • [29] K.S. Ravichandran, Fracture toughness of two-phase WC-Co cermets, Acta Metal. Mater. 42, 143-150 (1994). DOI: https://doi.org/10.1016/0956-7151(94)90057-4
  • [30] S. Hönle, S. Schmauder, Micromechanical simulation of cracks growth in WC/Co using embedded unit cells, Comput. Mater. Sci. 13, 56-60 (1998). DOI: https://doi.org/10.1016/S0927-0256(98)00045-7
  • [31] W. Li, H. Wang, L. Wang, C. Hou, X. Song, X. Liu, X. Han, In situ of fracture behavior of ultrafine WC-Co cemented carbide, Mat. Res. Letters 5, 55-60 (2017). DOI:https://doi.org/10.1080/21663831.2016.1208300
  • [32] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite, Comput. Mat. Sci. 43, 235-241 (2008). DOI: https://doi.org/10.1016/j.commatsci.2007.07.030
  • [33] D. Tkalich, G. Cailletauld, V.Y. Yestrebov, A. Kane, A micromechanical constitutive modelling of WC hardmetals using finite-element and uniform models. Mech. Mater. 105, 166-187 (2017). DOI: https://doi.org/10.1016/j.mechmat.2016.11.007
  • [34] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic intergranular layers under uniaxial tension, Comput. Mat. Sci. 34, 46-63 (2005). DOI: https://doi.org/10.1016/j.commatsci.2004.10.005
  • [35] T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent of polycrystalline ceramic materials with metallic inter-granular layers under tension, Mat. Sci. Eng. A. 424 230-238 (2006). DOI: https://doi.org/10.1016/j.msea.2006.03.004
  • [36] T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers, Comput. Mat. Sci. 39 230-236 (2007). DOI: https://doi.org/10.1016/j.commatsci.2006.03.022
  • [37] H. Dębski, T. Sadowski, Modelling of microcracks initiation and evolution along interfaces of the WC/Co composite by the finite element method, Comput. Mat. Sci. 83, 403-411 (2014). DOI: https://doi.org/10.1016/j.commatsci.2013.11.045
  • [38] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Comp. Interf. 18, 57-76 (2011). DOI: https://doi.org/10.1163/092764410X554049
  • [39] J. Maj, M. Basista, W. Węglewski, K. Bochenek, A. Strojny-Nędza, K. Naplocha, T. Panzner, M. Tatarková, F. Fiori, Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting, Mater. Sci. Eng. A 715 154-162 (2018). DOI: https://doi.org/10.1016/j.msea.2017.12.091
  • [40] K Vijayan, S. Ramalingam, M.R.A. Sadik, A.S. Prasanth, J. Nampoothiri, J.P. Escobedo-Diaz, K. Shankar, Fabrication of Co-Continuous ceramic composite (C4) through gas pressure infiltration technique, Mater. Today: Proc. 46 1013-1016 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.01.212
  • [41] R. Gil, A. Jinnapat, A.R. Kennedy, Pressure-assisted infiltration of molten aluminum into open-cell ceramic foams: experimental observations and infiltration modelling, Compos. Part A 43, 880-884 (2012). DOI: https://doi.org/10.1016/j.compositesa.2012.02.001
  • [42] H. Chang, R.L. Higginson, J.G.P. Binner, Interface study by dual-beam FIB TEM in a pressureless infiltrated Al(Mg)-Al2O3 interpenetrating composite, J. Microsc. 233, 132-139 (2009). DOI: https://doi.org/10.1111/j.1365-2818.2008.03103.x
  • [43] H. Chang, R. Higginson, J. Binner, Microstructure and property characterisation of 3-3 Al(Mg)/ Al2O3 interpenetrating composites produced by a pressureless infiltration technique, J. Mater. Sci. 45, 662-668 (2010). DOI: https://doi.org/10.1007/s10853-009-3983-9
  • [44] B.-C. Goo, M.-H. Kim, Characteristics of A356/SiCp and A390/SiCp composites, J. Mech. Sci. Technol. 26 (7), 2097-2100 (2012). DOI: https://doi.org/10.1007/s12206-012-0522-4
  • [45] L.K. Pan, J.M. Han, Z.Y. Yang, J.L. Wang, X. Li, Z.Q. Li, W.J. Li, Temperature effects on the friction and wear behaviors of SiCp/A356 composite against semimetallic materials, J. Adv. Mater. Sci. Eng. 2017, 1-12 (2017). DOI: https://doi.org/10.1155/2017/1824080
  • [46] X.D. Nong, Y.L. Jiang, M. Fang, L. Yu, C.Y. Liu, Numerical analysis of novel SiC3D/Al alloy co-continuous composites ventilated brake disc, Int. J. Heat Mass Transf. 108, 1374-1382 (2017). DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.108
  • [47] L. Jiang, Y. Jiang, L. Yu, H. Yang, Z. Li, Y. Ding, G. Fu, Fabrication, microstructure, friction and wear properties of SiC3D/Al brake disc-graphite/SiC pad tribo-couple for a high-speed train, Trans. Nonferrous Met. Soc. China 29, 1889-1902 (2019). DOI: https://doi.org/10.1016/S1003-6326(19)65097-1
  • [48] Q. Liu, F. Ye, Y. Gao, S. Liu, H. Yang, Z. Zhou, Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties, J. Alloys Compounds 585, 146-153 (2014). DOI: https://doi.org/10.1016/j.jallcom.2013.09.140
  • [49] P.A. Sylajakumari, R. Ramakrishnasamy, G. Palaniappan, Taguchi grey relational analysis for multi-response optimization of wear in co-continuous composite, Materials, 11, 1743 (2018). DOI: https://doi.org/10.3390/ma11091743
  • [50] H. Chang, J. Binner, R. Higginso Preparation and characterisation of ceramic-faced metal-ceramic interpenetrating composites for impact applications, J Mater. Sci. 46, 5237-5244 (2011). DOI: https://doi.org/10.1007/s10853-011-5461-4
  • [51] S. Roy, J. Frohnheiser, A. Wanner, Effect of ceramic preform freeze-casting temperature and melt infiltration technique on the mechanical properties of a lamellar metal/ceramic composite, J. Comp. Mater. 54, 2001-2011 (2020). DOI: https://doi.org/10.1177/0021998319890661
  • [52] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. Mater. Process. Technol. 142, 738-743 (2003). DOI: https://doi.org/10.1016/S0924-0136(03)00815-X
  • [53] G. Jiang, L. Ding, Y. Liu, W. Xiong, Y. Ni, X. Yao, J. Xu, W. Li, Study on the SiC-Al Co-continuous Phase, J. Mater. Process. Technol. 745-746, 577-581 (2013). DOI: https://doi.org/10.4028/www.scientific.net/MSF.745-746.577
  • [54] M. Basista, J. Jakubowska, W. Węglewski, Processing induced flaws in aluminum-alumina interpenetrating phase composites, Adv. Eng. Mater. 19, 1700484 (2017). DOI: https://doi.org/10.1002/adem.20170048
  • [55] D.K.Y. Tam, S. Ruan, P. Gao, T. Yu, High-performance ballistic protection using polymer nanocomposites, in Advances in Military Textiles and Personal Equipment (Ed. E. Sparks), 213-237 (2012).
  • [56] F. Lasagni, H.P. Degischer, Enhanced Young’s modulus of ­Al-Si alloys and reinforced matrices by co-continuous structures, J. Compos. Mat. 44, 739-755 (2010). DOI: https://doi.org/10.1177/0021998309347649
  • [57] A. Kurzawa, J.W. Kaczmar, Compressive strength of EN­AC-44200 based composite materials strengthened with a-Al2O3 particles, Arch. Foundry Eng. 17, 43-48, (2017). DOI: https://doi.org/10.1515/afe-2017-0049
  • [58] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under the bi-axial state of stress, Comput. Mat. Sci. 45, 693-697 (2009). DOI: https://doi.org/10.1016/j.commatsci.2008.06.005
  • [59] L. Marsavina, T. Sadowski, Kinked cracks at a bi-material ceramic interface - numerical determination of fracture parameters, Comput. Mat. Sci. 44, 941-950 (2009). DOI: https://doi.org/10.1016/j.commatsci.2008.07.005
Uwagi
1. The work was supported by the National Science Centre grant: UMO 2019/33/B/ST8/01263, Warsaw, Poland.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-357ca685-16ef-45fe-8a0f-93e6475172eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.