PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feasibility study on contact heating warm forming of 7075-T6 aluminum alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
7075 aluminum alloy is becoming an ideal material for the manufacture of vehicle body parts due to the demands for energy-saving and lighter vehicles. To solve the problem that the strength of 7075-T6 aluminum alloy decreases due to over-aging after warm forming, contact heating warm forming (CHWF) technology was proposed in this work. Contact heating is a fast and efficient heating method that can make the blank reach the target temperature in a very short time. In this work, the effect of contact heating on the mechanical properties and microstructures of 7075-T6 aluminum alloy after warm forming and paint-baking (PB) was studied. It only took about 11.5 s to heat the 2 mm 7075 aluminum alloy sheet to 200 ℃ by contact heating, and the strength and the hardness of the formed parts could reach 94% and 92.5% of T6 condition, respectively. In contrast, the heating furnace needed 690 s to heat the sheet to 200 °C, and the strength and the hardness of the formed parts were 87% and 85.4% of T6 condition, respectively. Due to the fast heating rate of contact heating (17.5 ℃/s), the atoms and vacancies in the matrix did not have time to undergo diffusion and aggregation, so that the precipitates could not coarsen obviously. As a result, most of the η' precipitates in the T6 condition were retained. However, long-term heating in the furnace led to the transformation of η' precipitates into coarse η phase and the loss of strength and hardness.
Rocznik
Strony
art. no. e209, 2023
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
autor
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
autor
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
autor
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
Bibliografia
  • 1. Xiao W, Wang B, Zheng K. An experimental and numerical investigation on the formability of AA7075 sheet in hot stamping condition. Int J Adv Manuf Tech. 2017;92:3299–309. https://doi. org/10.1007/s00170-017-0419-6.
  • 2. Yumi C, Jinwoo L, Sudhy S. Mechanical properties, springback, and formability of W-temper and peak aged 7075 aluminum alloy sheets: experiments and modeling. Int J Mech Sci. 2020;170:105344. https://doi.org/10.1016/j.ijmecsci.2019. 105344.
  • 3. Shabadi R, Suwas S, Kumar S, Roven HJ, Dwarkadasa ES. Tex- ture and formability studies on AA7020 Al alloy sheets. Mat Sci Eng A-struct. 2012;558:439–45. https://doi.org/10.1016/j.msea. 2012.08.024.
  • 4. Zhu L, Liu Z, Zhang Z. Investigation on strengthening of 7075 aluminum alloy sheet in a new hot stamping process with precooling. Int J Adv Manuf Tech. 2019;103:4739–46. https://doi. org/10.1007/s00170-019-03890-0.
  • 5. Huo W, Hou L, Zhang Y, Zhang J. Warm formability and post- forming microstructure/property of high-strength AA7075-t6 Al alloy. Mat Sci Eng A-struct. 2016;675:44–54. https://doi.org/10. 1016/j.msea.2016.08.054.
  • 6. Kumar M, Poletti C, Degischer HP. Precipitation kinetics in warm forming of AW7020 alloy. Mat Sci Eng A-struct. 2013;561:362– 70. https://doi.org/10.1016/j.msea.2012.10.031.
  • 7. Kumar M, Sotirov N, Chimani CM. Investigations on warm forming of AW7020-t6 alloy sheet. J Mater Process Tceh. 2014;214:1769–76. https:// doi. org/ 10. 1016/j. jmatp rotec. 2014. 03.024.
  • 8. Bagheriasl R, Worswick M, McKinley J, Simha H. An effec- tive warm forming process; numerical and experimental study. Int J Mater Form. 2010;3:219–22. https:// doi. org/ 10. 1007/ s12289-010-0746-8.
  • 9. Rasera JN, Daun KJ, Shi CJ, D’Souza M. Direct contact heating for hot forming die quenching. Appl Therm Eng. 2016;98:1165– 73. https://doi.org/10.1016/j.applthermaleng.2015.12.142.
  • 10. Zhang Z, Yu J, He D. Influence of contact solid-solution treat- ment on microstructures and mechanical properties of 7075 aluminum alloy. Mater Sci Eng A. 2019;743:500–3. https://doi.org/ 10.1016/j.msea.2018.11.108.
  • 11. Jaśkiewicz K, Skwarski M, Kaczyński P. Warm sheet metal forming of energy-absorbing elements made 7075 aluminum alloy in the hardened state T6. J Adv Manuf Technol. 2022;119:3157–79. https://doi.org/10.1007/s00170-021-08549-3.
  • 12. Evlen H, Kadi I, Yasar M. Effects of die corner radius and temperature on the formability of AA7075-t6 alloy. Acta Metall Sinengl. 2013;26:623–9. https://doi.org/10.1007/s40195-013-0129-5.
  • 13. Lee MY, Song SM, Kang CY. Effects of pre-treatment condi- tions on warm hydroformability of 7075 aluminum tubes. J Mater Process Tech. 2004;155:1337–43. https://doi.org/10.1016/i.jimat protec.2004.04.200.
  • 14. Kumar M. AW7075-t6 sheet for shock heat treatment forming process. T Nonferr Metal Soc. 2017;27:2156–62. https://doi.org/ 10.1016/s1003-6326(17)60241-3.
  • 15. Li XM, Starink MJ. Analysis of precipitation and dissolution in overaged 7xxx aluminium alloys using dsc. Mater Sci Forum. 2000;331–1:1071–6. https://doi.org/10.4028/www.scientific.net/ msf.331-337.1071.
  • 16. Oesterreicher JA, Tunes MA, Grabner F, Arnoldt A, Kremmer T, Pogatscher S, Schloegl CM. Warm-forming of pre-aged Al-Zn- Mg-Cu alloy sheet. Mater Design. 2020;193:108837. https://doi. org/10.1016/j.matdes.2020.108837.
  • 17. Li XM, Starink MJ. Dsc study on phase transitions and their correlation with properties of overaged Al-Zn-Mg-Cu alloys. J Mater Eng Perform. 2012;21:977–84. https://doi.org/10.1007/ s11665-011-9973-5.
  • 18. Su J, Zou Y, Chen K, Wang Z, Guan Q. Corrosion mechanism and characteristic of 7075–t6 aluminum alloy panel on airline aircraft. Chin J Mech Eng-En. 2013;49:0577–6686. https://doi. org/10.3901/jme.2013.08.091.
  • 19. Starink MJ, Wang SC. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys. Acta Mater. 2003;51:5131–50. https://doi. org/10.1016/s1359-6454(03)00363-x.
  • 20. Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lav- ernia EJ, Schoenung JM. Mechanical behavior and strengthening mechanisms in ultrafinegrain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–55. https://doi.org/10. 1016/j.actamat.2013.09.042.
  • 21. Zuo J, Hou L, Shi J, Cui H, Zhuang L, Zhang J. Effect of deformation induced precipitation on dynamic aging process and improvement of mechanical/corrosion properties AA7055 aluminum alloy. J Alloy Compd. 2017;708:1131–40. https://doi.org/10.1016/j.jallc om.2017.03.091.
  • 22. Zhang Z, Yu J, He D. Effects of contact body temperature and holding time on the microstructure and mechanical properties of 7075 aluminum alloy in contact solid solution treatment. J Alloy Compd. 2020;823:153919. https://doi.org/10.1016/j.jallcom.2020. 153919.
  • 23. Berg LK, GjØnne J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, Schryvers D, Wallenberg LR. Gp-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001;49:3443– 51. https://doi.org/10.1016/s1359-6454(01)00251-8.
  • 24. Gang S, Cerezo A. Early-stage precipitation in Al–Zn–Mg-Cu alloy (7050). Acta Mater. 2004;52:4503–16. https://doi.org/10. 1016/j.actamat.2004.06.025.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-357983be-3bd8-43ce-b326-a1421adbf80f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.