PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

AI enabled pneumonia detection and diagnosis based on the concatenation approach: A framework for healthcare sustainability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Early detection and diagnosis of pneumonia play a significant role in saving human life. However, detection of pneumonia from chest X-ray images with the help of radiologists is a time-consuming task. Thus, the development of an appropriate artificial intelligence (AI) enabled model for the precise detection of pneumonia becomes an important research topic. In this aspect, we develop an automated transfer learning-based pneumonia detection framework using a feature concatenation approach. The proposed approach uses the DenseNet pre-trained network and concatenates the features extracted from several dense blocks of DenseNet in order to obtain the dense multiscale information from the chest X-ray images. This feature concatenation process helps in improving the classification accuracy of the proposed framework and simplifies the pneumonia detection process. The proposed work achieves accuracy, sensitivity, specificity, and precision of 98.60%, 97.03%, 99.14%, and 97.51%, respectively, on the chest X-ray pneumonia dataset which are superior results to the existing deep learning-based pneumonia frameworks. It is concluded that the proposed AI-enabled pneumonia detection framework has the prospective to be considered as a computer-aided diagnosis support system for the early diagnosis of pneumonia.
Rocznik
Strony
341--355
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • School of Electronics Engineering, Kalinga Institute of Industrial Technology, Patia,751024, Bhubaneswar, India
  • School of Electronics Engineering, Kalinga Institute of Industrial Technology, Patia,751024, Bhubaneswar, India
  • Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, ul. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Baltycka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Ashok, K. and Gopikrishnan, S. (2023). Improving security performance of healthcare data in the internet of medical things using a hybrid metaheuristic model, International Journal of Applied Mathematics and Computer Science 33(4): 623-636, DOI: 10.34768/amcs-2023-0044.
  • [2] Behzadi-Khormouji, H., Rostami, H., Salehi, S., Derakhshande-Rishehri, T., Masoumi, M., Salemi, S. and Batouli, A. (2020). Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images, Computer Methods and Programs in Biomedicine 185: 105162.
  • [3] Bernardi, D., Caumo, F., Macaskill, P., Ciatto, S., Pellegrini,M., Brunelli, S. and Houssami, N. (2014). Effect of integrating 3d-mammography (digital breast tomosynthesis) with 2d-mammography on radiologists’ true-positive and false-positive detection in a population breast screening trial, European Journal of Cancer 50(7): 1232-1238.
  • [4] Casalino, G., Castellano, G., Hryniewicz, O., Leite, D., Opara, K., Radziszewska, W. and Kaczmarek-Majer, K. (2023). Semi-supervised vs. supervised learning for mental health monitoring: A case study on bipolar disorder, International Journal of Applied Mathematics and Computer Science 33(3): 419-428, DOI: 10.34768/amcs-2023-0030.
  • [5] Chouhan, V., Singh, S.K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C. and De Albuquerque, V.H.C. (2020). A novel transfer learning based approach for pneumonia detection in chest X-ray images, Applied Sciences 10(2): 559.
  • [6] Chowdhury, M.E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B. and Islam, M.T. (2020). Can ai help in screening viral and covid-19 pneumonia?, IEEE Access 8: 132665-132676.
  • [7] Cichosz, P. (2023). Bag of words and embedding text representation methods for medical article classification, International Journal of Applied Mathematics and Computer Science 33(4): 603-621, DOI: 10.34768/amcs-2023-0043.
  • [8] Dhere, A. and Sivaswamy, J. (2022). Covid detection from chest X-ray images using multi-scale attention, IEEE Journal of Biomedical and Health Informatics 26(4): 1496-1505.
  • [9] El-Douh, A.A.R., Lu, S.F., Elkouny, A.A. and Amein, A.S. (2022). Hybrid cryptography with a one-time stamp to secure contact tracing for covid-19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139-146, DOI: 10.34768/amcs-2022-0011.
  • [10] Feng, Y., Xu, X., Wang, Y., Lei, X., Teo, S.K., Sim, J.Z.T. and Tan, C.H. (2021). Deep supervised domain adaptation for pneumonia diagnosis from chest X-ray images, IEEE Journal of Biomedical and Health Informatics 26(3): 1080-1090.
  • [11] Feng, Y., Yang, X., Qiu, D., Zhang, H., Wei, D. and Liu, J. (2022). PCXRNet: Pneumonia diagnosis from chest X-ray images using condense attention block and multiconvolution attention block, IEEE Journal of Biomedical and Health Informatics 26(4): 1484-1495.
  • [12] Fu, Y., Xue, P., Zhang, Z. and Dong, E. (2023). Pka 2-net: Prior knowledge-based active attention network for accurate pneumonia diagnosis on chest X-ray images, IEEE Journal of Biomedical and Health Informatics 27(7): 3513-3524.
  • [13] Hashmi, M.F., Katiyar, S., Keskar, A.G., Bokde, N.D. and Geem, Z.W. (2020). Efficient pneumonia detection in chest X-ray images using deep transfer learning, Diagnostics 10(6): 417.
  • [14] Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017). Densely connected convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 4700-4708.
  • [15] Hussain, A., Amin, S.U., Lee, H., Khan, A., Khan, N.F. and Seo, S. (2023). An automated chest X-ray image analysis for covid-19 and pneumonia diagnosis using deep ensemble strategy, IEEE Access 11: 97207-97220.
  • [16] Jain, R., Nagrath, P., Kataria, G., Kaushik, V.S. and Hemanth, D.J. (2020a). Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning, Measurement 165: 108046.
  • [17] Jaiswal, A.K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A. and Rodrigues, J.J. (2019). Identifying pneumonia in chest X-rays: A deep learning approach, Measurement 145: 511-518.
  • [18] Khan, W., Zaki, N. and Ali, L. (2021). Intelligent pneumonia identification from chest X-rays: A systematic literature review, IEEE Access 9: 51747-51771.
  • [19] Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85-106.
  • [20] Kundu, R., Das, R., Geem, Z.W., Han, G.T. and Sarkar, R. (2021). Pneumonia detection in chest X-ray images using an ensemble of deep learning models, PLoS ONE 16(9): e0256630.
  • [21] Li, X., Shen, L., Xie, X., Huang, S., Xie, Z., Hong, X. and Yu, J. (2020). Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection, Artificial Intelligence in Medicine 103: 101744.
  • [22] Liang, G. and Zheng, L. (2020a). A transfer learning method with DEEP residual network for pediatric pneumonia diagnosis, Computer Methods and Programs in Biomedicine 187: 104964.
  • [23] Liang, G. and Zheng, L. (2020b). A transfer learning method with deep residual network for pediatric pneumonia diagnosis, Computer Methods and Programs in Biomedicine 187: 104964.
  • [24] Ling, G. and Cao, C. (2019). Automatic detection and diagnosis of severe viral pneumonia CT images based on LDA-SVM, IEEE Sensors Journal 20(20): 11927-11934.
  • [25] Malla, P.P., Sahu, S. and Alutaibi, A.I. (2023). Classification of tumor in brain MR images using deep convolutional neural network and global average pooling, Processes 11(3): 679.
  • [26] Mooney, P. (2018). Chest X-ray images (pneumonia), https: //www.kaggle.com/paultimothymooney/chest-xray-pneumonia.
  • [27] Muhammad, Y., Alshehri, M.D., Alenazy,W.M., Vinh Hoang, T. and Alturki, R. (2021). Identification of pneumonia disease applying an intelligent computational framework based on deep learning and machine learning techniques, Mobile Information Systems 2021(1): 9989237.
  • [28] Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D. and Pfeiffer, D. (2019). Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization, Scientific Reports 9(1): 1-9.
  • [29] Rahman, T., Chowdhury, M.E., Khandakar, A., Islam, K.R., Islam, K.F., Mahbub, Z.B. and Kashem, S. (2020a). Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray, Applied Sciences 10(9): 3233.
  • [30] Rahman, T., Chowdhury, M.E., Khandakar, A., Islam, K.R., Islam, K.F., Mahbub, Z.B. and Kashem, S. (2020b). Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray, Applied Sciences 10(9): 3233.
  • [31] Rak, E., Szczur, A., Bazan, J.G. and Bazan-Socha, S. (2023). Assessment measures of an ensemble classifier based on the distributivity equation to predict the presence of severe coronary artery disease, International Journal of Applied Mathematics and Computer Science 33(3): 361-377, DOI: 10.34768/amcs-2023-0026.
  • [32] Sheu, R.K., Pardeshi, M.S., Pai, K.C., Chen, L.C., Wu, C.L. and Chen, W.C. (2023). Interpretable classification of pneumonia infection using explainable AI (XAI-ICP), IEEE Access 11: 28896-28919.
  • [33] Siddiqi, R. (2019). Automated pneumonia diagnosis using a customized sequential convolutional neural network, Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, New York, USA, pp. 64-70.
  • [34] Singh, S. and Tripathi, B.K. (2022). Pneumonia classification using quaternion deep learning, Multimedia Tools and Applications 81(2): 1743-1764.
  • [35] Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R. and Ibragimov, B. (2019). Deep neural network ensemble for pneumonia localization from a large-scale chest X-ray database, Computers & Electrical Engineering 78: 388-399.
  • [36] Souza, J.C., Diniz, J.O.B., Ferreira, J.L., da Silva, G.L.F., Silva, A.C. and de Paiva, A.C. (2019). An automatic method for lung segmentation and reconstruction in chest x-ray using deep neural networks, Computer Methods and Programs in Biomedicine 177: 285-296.
  • [37] Stephen, O., Sain, M., Maduh, U.J. and Jeong, D.U. (2019). An efficient deep learning approach to pneumonia classification in healthcare, Journal of Healthcare Engineering 2019(1):4180949.
  • [38] Szepesi, P. and Szilágyi, L. (2022). Detection of pneumonia using convolutional neural networks and deep learning, Biocybernetics and Biomedical Engineering 42(3): 1012-1022.
  • [39] Taylor, A.G., Mielke, C. and Mongan, J. (2018). Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study, PLoS Medicine 15(11): e1002697.
  • [40] Toğaçar, M., Ergen, B., Cömert, Z. and Özyurt, F. (2020). A deep feature learning model for pneumonia detection applying a combination of MRMR feature selection and machine learning models, IRBM 41(4): 212-222.
  • [41] Wang, H., Shen, Y., Wang, S., Xiao, T., Deng, L., Wang, X. and Zhao, X. (2019). Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease, Neurocomputing 333: 145-156.
  • [42] Woźniak,M., Połap, D., Capizzi, G., Sciuto, G.L., Kośmider, L. and Frankiewicz, K. (2018). Small lung nodules detection based on local variance analysis and probabilistic neural network, Computer Methods and Programs in Biomedicine 161: 173-180.
  • [43] Yang, Z.Y. and Zhao, Q. (2020). A multiple deep learner approach for X-ray image-based pneumonia detection, 2020 International Conference on Machine Learning and Cybernetics (ICMLC), Adelaide, Australia, pp. 70-75.
  • [44] Yaseliani, M., Hamadani, A.Z., Maghsoodi, A.I. and Mosavi, A. (2022). Pneumonia detection proposing a hybrid deep convolutional neural network based on two parallel visual geometry group architectures and machine learning classifiers, IEEE Access 10: 62110-62128.
  • [45] Zhang, J., Xie, Y., Pang, G., Liao, Z., Verjans, J., Li, W. and Xia, Y. (2020). Viral pneumonia screening on chest X-rays using confidence-aware anomaly detection, IEEE Transactions on Medical Imaging 40(3): 879-890.
  • [46] Zhang, X., Han, L., Sobeih, T., Han, L., Dempsey, N., Lechareas, S. and Zhang, D. (2022). CXR-Net: a multitask deep learning network for explainable and accurate diagnosis of COVID-19 pneumonia from chest X-ray images, IEEE Journal of Biomedical and Health Informatics 27(2): 980-991.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35793f2c-f491-4c9d-9ddc-d9cbcbc68669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.