PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acceleration feature points of unsteady shear flows

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A framework for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.
Słowa kluczowe
Rocznik
Strony
55--80
Opis fizyczny
Bibliogr. 37 poz., rys. kolor.
Twórcy
autor
  • IVU Traffic Technologies AG, Berlin, Germany
  • IST Austria, Klosterneuburg, Austria
autor
  • Linköping University, Norrköping, Sweden
autor
  • Zuse Institute Berlin (ZIB), Berlin, Germany
autor
  • LIMSI-CNRS, Orsay, France
  • Institut für Strömungsmechanik Technische Universität Braunschweig, Germany
autor
  • IMFT, CNRS, Toulouse, France
  • Poznań University of Technology, Poznań, Poland
Bibliografia
  • 1. M. Brøns, B. Jakobson, K. Niss, A.V. Bisgaard, L.K. Voigt, Streamline topology in the near wake of a circular cylinder at moderate Reynolds numbers, Journal of Fluid Mechanics, 584, 23–43, 2007.
  • 2. C. Basdevant, T. Philipovitch, On the validity of the “Weiss criterion” in twodimensional turbulence, Phys. D, 73, 17–30, 1994.
  • 3. B. Cabral, L.C. Leedom, Imaging vector fields using line integral convolution, in: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’93, New York, ACM, 263–270, 1993.
  • 4. A.V.G. Cavalieri, G. Daviller, P. Comte, P. Jordan, G. Tadmor, Y. Gervais, Using large eddy simulation to explore sound-source mechanisms in jets, J. Sound Vibr., 330, 4098–4113, 2011.
  • 5. P. Comte, J.H. Silvestrini, P. Bégou, Streamwise vortices in large-eddy simulations of mixing layer, Eur. J. Mech. B, 17, 615–637, 1998.
  • 6. H. Edelsbrunner, J. Harer, Persistent homology — a survey, in: Surveys on Discrete and Computational Geometry: Twenty Years Later, J. E. Goodman, J. Pach, and R. Pollack, eds., 458, 257–282, AMS Bookstore, 2008.
  • 7. R. Forman, Morse theory for cell-complexes, Advances in Mathematics, 134, 90–145, 1998.
  • 8. J. Freund, Noise sources in a low Reynolds number turbulent jet at Mach 0.9, J. Fluid Mech., 438, 277–305, 2001.
  • 9. S. Goto, J.C. Vassilicos, Self-similar clustering of inertial particles and zeroacceleration points in fully developed two-dimensional turbulence, Phys. Fluids, 18, 115103–1..10, 2006.
  • 10. D. Gottlieb, E. Turkel, Dissipative two-four methods for time-dependent problems, Math. of Comp., 30, 703–723, 1976.
  • 11. G. Haller, Distinguished material surfaces and coherent structures in 3D fluid flows, Physica D: Nonlinear Phenomena, 149, 248–277, 2001.
  • 12. G. Haller, An objective definition of a vortex, J. Fluid Mech., 525, 1–26, 2005.
  • 13. F. Hama, Streaklines in a perturbed shear flow, Phys. Fluids, 5, 644–650, 1962.
  • 14. C. Jackson, A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J. Fluid Mech., 182, 23–45, 1987.
  • 15. J. Kasten, I. Hotz, B.R. Noack, H.-C. Hege, Vortex merge graphs in two-dimensional unsteady flow fields, in: Proceedings of Joint EG – IEEE TVCG Symposium on Visualization, 2012.
  • 16. M.J. Lighthill, Attachment and Separation in Three-Dimensional Flow, 1st ed., Oxford University Press, Oxford, 1963.
  • 17. J. Milnor, Morse Theory, Princeton University Press, 1963.
  • 18. B.R. Noack, K. Afanasiev, M. Morzyn’ski, G. Tadmor, F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335–363, 2003.
  • 19. B.R. Noack, P. Papas, P.A. Monkewitz, The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech., 523, 339–365, 2005.
  • 20. B.R. Noack, I. Pelivan, G. Tadmor, M. Morzyn’ski, P. Comte, Robust low-dimensional Galerkin models of natural and actuated flows, in: W. Schröder and P. Tröltzsch, Fourth Aeroacoustics Workshop, Institut für Akustik und Sprachkommunikation, Technische Universität Dresden, 2004.
  • 21. R.W. Panton, Incompressible Flow, Wiley, New York, 1984.
  • 22. A.E. Perry, M.S. Chong, A description of eddying motions and flow patterns using critical-point concepts, Ann. Rev. Fluid Mech., 19, 125–155, 1987.
  • 23. J. Reininghaus, D. Günther, I. Hotz, S. Prohaska, H.-C. Hege, TADD: A computational framework for data analysis using discrete Morse theory, in: Proc. ICMS 2010, 2010.
  • 24. J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz, Efficient computation of combinatorial feature flow fields, IEEE Trans. Vis. Comput. Graph., 18, 1563–1573, 2012.
  • 25. V. Robins, P. Wood, A. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1646–1658, 2011.
  • 26. D. Rodriguez, V. Theofilis, Structural changes of laminar separation bubbles induced by global linear instability, J. Fluid Mech., 655, 280–305, 2010.
  • 27. D. Rodriguez, V. Theofilis,On the birth of stall cells on airfoils, Theor. Comput. Fluid Dyn., 25, 105–117, 2011.
  • 28. M. Schumm, E. Berger, P. Monkewitz, Self-excited oscillations in the wake of two-dimensional bluff bodies and their control, J. Fluid Mech., 271, 17–53, 1994.
  • 29. D. Stalling, H.-C. Hege, Fast and resolution independent line integral convolution, in Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’95, New York, NY, USA, 1995, ACM, 249–256, 1995.
  • 30. J. Stuart, On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29, 417–440, 1967.
  • 31. G.I. Taylor, The spectrum of turbulence, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 164, 476–490, 1938.
  • 32. M. Tobak, D.J. Peake, Topology of three-dimensional separated flows, Ann. Rev. Fluid Mech., 14, 61–85, 1982.
  • 33. L. Wang, N. Peters, The length-scale distribution function of the distance between extremal points in passive scalar turbulence, J. Fluid Mech., 554, 457–475, 2006.
  • 34. L. Wang, N. Peters, Length-scale distribution functions and conditional means for various fields in turbulence, J. Fluid Mech., 608, 113–138, 2008.
  • 35. C. Williamson, Vortex dynamics in the cylinder wake, Ann. Rev. Fluid Mech., 28, 477–539, 1996.
  • 36. A. Zebib, Stability of viscous flow past a circular cylinder, J. Eng. Math., 21, 155–165, 1987.
  • 37. H.-Q. Zhang, U. Fey, B.R. Noack, M. König, H. Eckelmann, On the transition of the cylinder wake, Phys. Fluids, 7, 779–795, 1995.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-356f510f-e1e5-4b33-a6b0-05f7cdf0a206
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.