PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of non-equidistant baffle spacing in a small shell and tube heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of the formulations regarding the characteristics of a shell and tube heat exchanger have a common assumption; namely that the baffle plates are equidistant. This assumption fails to cater the real world scenario for defective baffles as the alteration in a shell and tube heat exchanger invalidates the equidistant baffle spacing of the plates. In this regard, a small six baffles heat exchanger was modeled in the computational fluid dynamics software package and studied by removing each baffle plate one at a time. Effect of removing each baffle plate on the temperature, pressure, heat transfer coefficient, and total heat transfer rate was recorded. It was observed that variation in the pressure drop for the same number of baffle plates varies along the axial order of the plates. The change in pressure drop due to the removal of the baffle plate near the inlet and the outlet was lowest and reaches a maximum in the axial center. It was also found that the plates below the radial center contribute higher towards the overall heat transfer as compared to those above.
Rocznik
Strony
201--221
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wz.
Twórcy
  • Institute of Business and Management, Korangi Creek, Karachi, Pakistan
  • National University of Sciences and Technology. NUST Campus, H-12, Islamabad, Pakistan
Bibliografia
  • [1] Shah R.K., Sekulic D.P.: Fundamentals of Heat Exchanger Design. Wiley, New Jersey 2003.
  • [2] Brogan R.J.: Shell and tube heat exchangers. https://www.wcrhx.com/shell-andtube-heat-exchangers (accessed 5 Dec. 2018).
  • [3] Meng J.-A., Liang X.-G., Chen Z.-J., Li Z.-X.: Experimental study on convective heat transfer in alternating elliptical axis tubes. Exp. Therm. Fluid Sci. 29(2005), 4, 457–465.
  • [4] Kern D.Q.: Process Heat Transfer. McGraw-Hill, 1950.
  • [5] Serth R.W., Lestina T.: Process Heat Transfer, Principles and Applications. Elsevier, San Diego 2007.
  • [6] Bergelin O.P., Brown G.A., Colburn A.P.: Heat transfer and fluid friction during flow across banks of tubes. Part V: A study of a Cylindrical Baffled Exchanger without Internal Leakage. Trans. Am. Soc. Eng. 1(1954), 76, 841–850.
  • [7] Peters M., Timmerhaus K., West R.: Plant Design and Economics for Chemical Engineers. McGraw-Hill, New York 2002.
  • [8] Ozden E., Tari I.: Shell side CFD analysis of a smal shell and tube heat exchanger. Energ. Convers. Manag. 51(2010), 5, 1004–1014.
  • [9] Ma B., Ruwet V., Corieri P., Theunissen R., Riethmuller M., Darquenne C.: CFD simulation and experimental validation of fluid flow and particle transport in a model of alveolated airways. J. Aerosol Sci. 40(2009), 5, 403–414.
  • [10] Oberkampf W.L., Barone M.F.: Measures of agreement between computation and experiment: Validation metrics. J. Comput. Phys. 217(2006), 1, 5–36.
  • [11] Varga S., Oliveira A.C., Ma X., Omer S.A., Riffat W.Z.S.B.: Comparison of CFD and experimental performance results of a variable area ratio steam ejector. Int. J. Low-Carbon Technol. 6(2010), 2, 119–124.
  • [12] Abdulkadir M., Hernandez-Perez V., Lo S., Lowndes I.S. , Azzopardi B.J.: Comparison of experimental and computational fluid dynamics (CFD) studies of slug flow in a vertical 90 bend. J. Comput. Multiph. Flow. 5(2013), 4, 265–281.
  • [13] Aldoori H., Bertrand J., Chergui N., Debab A.: An investigation of heat transfer in a mechanically agitated vessel. J. Appl. Fluid Mech. 4(2011), 2, 43–50.
  • [14] Mukherjee R.: Effective design shell-and-tube heat exchanger. Chem. Eng. Prog. 94(1998), 2, 21–37.
  • [15] Heal Exchangers Manual. Flo Fab Inc., Lake Worth 2009.
  • [16] Andrzejczyk R., Muszyński T.: Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness. Arch. Thermodyn. 37(2016), 4, 137–159.
  • [17] Aicher T., Kim W.K.: Experimental investigation of heat Transfer in shell and tube heat exchangers without baffles. Korean J. Chem. Eng. 2(1997), 14, 93–100.
  • [18] Khan W.A., Culham J., Yovanovich M.: Convection heat transfer from tube banks in crossflow: Analytical approach. Int. J. Heat Mass Transf. 49(2006), 4831– 4838.
  • [19] Prithiviraj M., Andrewsa M.J.: Three Dimensional numerical simulation of shell and tube heat exchangers. Part I: Foundation and fluid mechanics. Numer. Heat Transfer A: Appl. 33(1998), 8, 799–816.
  • [20] Rehman U.U.: Heat Transfer Optimization. Chalmers University of Technology, Goteborg 2011.
  • [21] Spalart P., Allmaras S.: A one-equation turbulence model for aerodynamic flows. Rech. Aerospat. 1(1994), 5–21.
  • [22] Bhutta M.M.A., Hayat N., Bashir M.H., Khan A.R., Ahmad K.N., Khan S.: CFD applications in various heat exchangers design: A review. Appl. Therm. Eng. 32(2011), 1–12.
  • [23] Kim J.Y., Ghajar A., Tang C., Foutch G.L.: Comparision of near-wall treatment methods for high Reynolds number backward-facing step flow. Int. J. Comput. Fluid Dyn. 19(2005), 7, 493–500.
  • [24] Karas M., Zajac D., Ulbrich R.: Experimental investigation of heat transfer performance coefficient in tube bundle of shell and tube heat exchanger in two-phase flow. Arch. Thermodyn. 35(2014), 1, 89–98.
  • [25] Anderson J.D.: Computational Fluid Dynamics for Engineers. Cambridge University Press, New York 2010.
  • [26] Fletcher C.: Computational Techniques for Fluid Dynamics, Vol. I. Springer, Berlin 1991.
  • [27] Nee V.W., Kavasznay L.S.G.: Simple phenomenological theory of turbulent shear flow. Phys. Fluids 12(1969), 473–484.
  • [28] Rumsey C.: Spalart-Allmaras Model. Langley Research Center NASA, 2018. https://turbmodels.larc.nasa.gov/spalart.html (accessed 5 Dec. 2018).
  • [29] Hoffman K.A., Chiang S.T.: Computational Fluid Dynamics, Vol. I. Michigan Engineering Education System, 2000.
  • [30] Murman E.M., Abarbanel S.S.: Progress and Supercomputing in CFD. Springer, Boston 1984.
  • [31] Zhang Z., Li Y.: CFD simulation on inlet configuration of plate-fin heat exchangers. Cryogenics 43(2003), 12, 673–678.
  • [32] Bartoszewicz J., Boguslawski L.: Numerical analysis of the steam flow field in shell and tube heat exchanger. Arch. Thermodyn. 37(2016), 2, 107–120.
  • [33] Chilton T.H., Drew T.B., Jebens R.H.: Heat transfer coefficients in agitated vessels. Ind. Eng. Chem. 36(1944), 6, 510–516.
  • [34] Pal E., Kumar I., Joshi J.B., Maheshwari N.K.: CFD simulations of shell-side flow in a shell-and-tube type heat exchanger with and without baffles. Chem. Eng. Sci. 143(2016), 314–340.
  • [35] Skagestad B., Mildenstein P.: District Heating and Cooling Connection Handbook. International Energy Agency, Paris 1999.
  • [36] Donaa M.H.K., Jalalirabd M.R.: Software evaluation via a study of deviations in results of manual and computer-based step-wise method calculations for shell and tube heat exchangers. Int. J. Appl. Sci. Eng. 2(2014), 12, 114–126.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35670831-5324-45ae-a595-2dda334a637c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.