PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi-homogenous model of electrochemical machining of turbine engine parts

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to increase the efficiency of jet engines hard to machine nickel-based and titanium-based alloys are in common use for aero engine components such as blades and blade integrated disks (BLISK). Electrochemical Machining (ECM) provides an economical and effective method for machining high strength and heat-resistant materials into complex shapes with high material removal rate without tool wear and without inducing residual stress. This article presents the physical and mathematical models of electrochemical shaping used in the manufacture of turbine engine parts. The modelling is based on the assumption that the multi-phase mixture filling the gap is treated as two-phase quasi-homogenous medium. The model describes the workpiece shape evolution in time, distribution the local gap size, flow parameters such as the static pressure and the velocity, temperature and void fraction as result of gas generation. The major features of the numerical computer program are briefly described with a selected example of machining a typical turbine blade. The results of computer simulation of effects of setting parameters ECM on accuracy-machined profile are discussed. The improvement of accuracy has been reached by using described sequence of ECM and Pulse ECM processes.
Twórcy
autor
  • Łukasiewicz Research Network − Institute of Aviation Krakowska Av. 110/114, 02-256 Warsaw, Poland tel.: +48 22 8460011, fax: +48 22 8464432
Bibliografia
  • [1] Davydov, A. D., Volgin, V. M., Electrochemical Machining, Encyclopedia of Electro-chemistry, Vol. 5, Chapter 12, Electrochemical Engineering, Bard, A. J. ed., Willey-VCH, New York 2007.
  • [2] Davydov, A. D., Kozak, J., High Rate Electrochemical Shaping, Ed. Nauka, Moscow 1990.
  • [3] Flightpath 2050 (2011) Europe’s Vision for Aviation, Report of the High-Level Group on Aviation Research, Publications Office of the European Union Luxembourg, 2011.
  • [4] Kozak, J., Mathematical Modelling of Advanced Manufacturing Processes, Scientific Library of Institute of Aviation, No. 56, Warsaw 2019.
  • [5] Kozak, J., Surface Shaping by Electrochemical Machining, Transaction of Warsaw University of Technology, Warsaw 1976.
  • [6] Kozak, J., Computer Simulation System for Electrochemical Shaping, Journal of Materials Processing Technology, Vol. 109, No. 3, pp. 354-359, 2001.
  • [7] Kozak, J., Lubkowski, K., The Basic Investigation of Characteristic in the Pulse ECM, Proceed. 20th M.T.D.R. Int. Conf., pp. 625-630, Birmingham 1979.
  • [8] Kozak, J., Rajurkar, K. P., Wei, B., Modelling and Analysis of Pulse Electrochemical Machining (PECM), Transaction of ASME – Journal of Engineering for Industry, Vol. 116, No. 3, 1994.
  • [9] Purcar, M., Dorochenko, A., Borteis, L., Deconinck, J. B., Van den Bossche, B., Advanced CAD integrated approach for 3D electrochemical machining simulations, Journal of Materials Processing Technology, Vol. 203, pp. 58-71, 2008.
  • [10] Rajurkar, K. P., McGeough, J. A., Kozak, J., De Silva, A., New Developments in Electro-Chemical Machining, Annals of the CIRP, Vol. 48/2, pp. 567-579, 1999.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3565f8d7-ccfb-49d6-b9d2-9ccb3375dfab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.