PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A review of compressed air engine in the vehicle propulsion system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Engines powered by compressed air as a source of propulsion are known for many years. Nevertheless, this type of drive is not commonly used. The main reason for not using commonly is the problem with the low energy density of the compressed air. They offer a number of advantages, primarily focusing on the possibility of significantly lowering the emissions of the engine. Their emissivity mainly depends on the method of obtaining compressed air. This also has an impact on the economic aspects of the drive. Currently there are only a few, ready to implement, compressed air powered engine solutions available on the market. A major advantage is the ability to convert internal combustion engines to run with compressed air. The study provides a literature review of solutions, focusing on a multifaceted analysis of pneumatic drives. Increasing vehicle approval requirements relating to their emissions performance are encouraging for the search of alternative power sources. This creates an opportunity for the development of unpopular propulsion systems, including pneumatic engines. Analysing the works of some researchers, it is possible to notice a significant increase in the efficiency of the drive, which may contribute to its popularisation.
Rocznik
Strony
215--226
Opis fizyczny
Bibliogr. 135 poz., rys., tab., wykr.
Twórcy
  • Doctoral School, Bialystok University of Technology, 45A Wiejska Str., 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Str., 15-351 Bialystok, Poland
Bibliografia
  • 1. Akira I., Hideo S. (2004), Analysis of Compression-induced Auto-ignition Combustion Characteristics of HCCI and ATAC Using the Same Engine, Journal of Mechanical Science and Technology, Vol. 20, No. 9, 1449–1458.
  • 2. Allam S., Zakaria M. (2018), Experimental Investigation of Compressed Air engine Performance, International Journal of Engineering Inventions, Vol. 7, 13–20.
  • 3. Archer H.B. (1929), US1776963A Compressed-air engine.
  • 4. Ashok B., Denis Ashok S., Ramesh Kumar C. (2015), LPG diesel dual fuel engine - A critical review, Alexandria Engineering Journal, Vol. 54, No. 2, 105-126.
  • 5. Baseley S., Ehret C., Greif E., Kliffken M.G. (2007), Hydraulic hybrid systems for commercial vehicles, SAE Technical Papers, Vol. 2007-01-4150, 1-8.
  • 6. Beik Y., Dziewiątkowski M., Szpica D. (2020), Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment, SAE International Journal of Engines, Vol. 13, No. 5, 1-22.
  • 7. Bensaid S., Caroca C.J., Russo N., Fino D. (2011), Detailed investigation of non-catalytic DPF regeneration, Canadian Journal of Chemical Engineering, Vol. 89, 401–407.
  • 8. Bielaczyc P., Woodburn J. (2019), Trends in Automotive Emission Legislation: Impact on LD Engine Development, Fuels, Lubricants and Test Methods: a Global View, with a Focus on WLTP and RDE Regulations, Emission Control Science and Technology, Vol. 5, No. 1, 86–98.
  • 9. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc, Vol. 17, 1–6.
  • 10. Borawski A. (2018), Simulation Study of the Process of Friction in the Working Elements of a Car Braking System at Different Degrees of Wear, Acta Mechanica et Automatica, Vol. 12, No. 3, 221-226.
  • 11. Borawski A. (2020), Conventional and unconventional materials used in the production of brake pads – Review, Science and Engineering of Composite Materials, Vol. 27, 374-396.
  • 12. Brown R. (1972), US3765180A Compressed air engine.
  • 13. Budt M., Wolf D., Span R., Yan J. (2016), A review on compressed air energy storage: Basic principles, past milestones and recent developments, Applied Energy, Vol. 170, 250–268.
  • 14. Caban J., Litak G., Ambrożkiewicz B., Gardyński L., Stączek P., Wolszczak P. (2020), Impact-based piezoelectric energy harvesting system excited from diesel engine suspension, Applied Computer Science, Vol. 16, No. 3, 16-29.
  • 15. Cestero L.G. (1985), US4651525A Piston reciprocating compressed air engine.
  • 16. Chen L., Zheng T., Mei S., Xue X., Liu B., Lu Q. (2016), Review and prospect of compressed air energy storage system, Journal of Modern Power Systems and Clean Energy, Vol. 4, 529–541.
  • 17. Creutzig F., Papson A., Schipper L., Kammen D.M. (2009), Economic and environmental evaluation of compressed - air cars, Environmental Research Letters, Vol. 4, 1-10.
  • 18. Crosby Valve Inc. (1997), Pressure Relief Valve, Engineering Handbook, 1-93.
  • 19. Di Pietro A. (1999), EP1204809B1 Rotary piston engine.
  • 20. Dimitrova Z., Maréchal F. (2015), Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization, Applied Energy, Vol. 151, 168–177.
  • 21. Duraisamy G., Rangasamy M., Govindan N. (2020), A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine, Renewable Energy, Vol. 145, 542-556.
  • 22. Eliot S. (1934), US1954408A Compressed air engine.
  • 23. Foley A.M., Winning I.J., Gallachóir B.P. (2010), State-of-the-art in electric vehicle charging infrastructure, 2010 IEEE Vehicle Power and Propulsion Conference, 1-6.
  • 24. Forzatti P. (2001), Present status and perspectives in de-NOx SCR catalysis, Applied Catalysis A: General, Vol. 222, 221-236.
  • 25. Friar T.D., Holdcroft J.F. (1925), GB253219A An improved compressed air engine.
  • 26. García A., Monsalve-Serrano J., Villalta D., Guzmán-Mendoza M. (2020), Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-mode dual-fuel combustion, Fuel, Vol. 287, 1-13.
  • 27. Gołębiowski W., Wolak A., Zając G. (2018), Definition of oil change intervals based on the analysis of selected physicochemical properties of used engine oils, Combustion Engines, Vol. 172, 44-50.
  • 28. Gołębiowski W., Wolak A., Zając G. (2019), The influence of the presence of a diesel particulate filter (DPF) on the physical and chemical properties as well as the degree of concentration of trace elements in used engine oils, Petroleum Science and Technology, Vol. 37, 746-755.
  • 29. Gołębiowski W., Zając G., Wolak A. (2019), Analysis of Engine Oils from Farm Tractors in the Aspect of their Change, Agricultural Engineering, Vol. 23, 25-38.
  • 30. Gosala D.B., Allen C.M., Ramesh A.K., Shaver G.M., McCarthy J., Stretch D., Koeberlein E., Farrell L. (2017), Cylinder deactivation during dynamic diesel engine operation, International Journal of Engine Research, Vol. 18, No. 10, 991–1004.
  • 31. Grazzini G., Milazzo A. (2012), A thermodynamic analysis of multistage adiabatic CAES, Proceedings of the IEEE, Vol. 100, 461–472.
  • 32. Guan B., Zhan R., Lin H., Huang Z. (2014), Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust, Applied Thermal Engineering, Vol. 66, 395–414.
  • 33. Guan B., Zhan R., Lin H., Huang Z. (2015), Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines, Journal of Environmental Management, Vol. 154, 225–258.
  • 34. Guzzella L., Onder C., Dönitz C., Voser C., Vasile I. (2010), The pneumatic hybridization concept for downsizing and supercharging gasoline engines, MTZ worldwide, Vol. 71, 38–44.
  • 35. Hannan M.A., Azidin F.A., Mohamed A. (2014), Hybrid electric vehicles and their challenges: A review, Renewable and Sustainable Energy Reviews, Vol. 29, 135–150.
  • 36. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R., Walton A., Christensen P., Heidrich O., Lambert S., Abbott A., Ryder K., Gaines L., Anderson P. (2019), Recycling lithium-ion batteries from electric vehicles, Nature, Vol. 575, 75-86.
  • 37. Hawkins T.R., Singh B., Majeau-Bettez G., Strømman A.H. (2013), Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles, Journal of Industrial Ecology, Vol. 17, 53-64.
  • 38. Heck R.M., Farrauto R.J. (2001), Automobile exhaust catalysts, Applied Catalysis A: General, Vol. 221, 443–457.
  • 39. Hoke A., Brissette A., Maksimović D., Pratt A., Smith K. (2011), Electric vehicle charge optimization including effects of lithium-ion battery degradation, 2011 IEEE Vehicle Power and Propulsion Conference, 1-8.
  • 40. Hooftman N., Messagie M., Van Mierlo J., Coosemans T. (2018), A review of the European passenger car regulations – Real driving emissions vs local air quality, Renewable and Sustainable Energy Reviews, Vol. 86, 1–21.
  • 41. http://www.thefuture.net.nz/engine.htm [online cit.: 2021.04.15].
  • 42. https://air-volution.com.au/compressed-air-engine/ [online cit.: 2021.04.16].
  • 43. https://americanindustrialmining.com/porter-locomotives [online cit.: 2021.04.14].
  • 44. https://www.engineair.com.au/ [online cit.: 2021.04.15].
  • 45. https://www.groupe-psa.com/en/newsroom/automotive-innovation/ hybrid-air [online cit.: 2021.04.03].
  • 46. https://www.mdi.lu/airpod-2-0 [online cit.: 2021.04.15].
  • 47. https://www.pmreview.com/wpcontent/uploads/2013/01/psa_air_hybrid-1 [online cit.: 2021.04.15].
  • 48. https://www.tramwayinfo.com/Defair.htm [online cit.: 2021.04.15].
  • 49. Huang C.Y., Hu C.K., Yu C.J., Sung C.K. (2013), Experimental investigation on the performance of a compressed-air driven piston engine, Energies, Vol. 6, 1731-1745.
  • 50. Huang K.D., Tzeng S.C. (2005), Development of a hybrid pneumatic-power vehicle, Applied Energy, Vol. 80, 47–59.
  • 51. Huang K.D., Tzeng S.C., Chang W.C. (2005), Energy-saving hybrid vehicle using a pneumatic-power system, Applied Energy, 81, 1–18.
  • 52. Hudgens R.D., Bustamante R.B. (1993), Toxicity and disposal of engine coolants, ASTM Special Technical Publication, 149-164.
  • 53. Ivlev V.I., Misyurin S.Y. (2017), Calculated and experimental characteristics of a scroll machine operating in the air motor mode, Doklady Physics, Vol. 62, 42–45.
  • 54. Jeuland N., Montagne X., Duret P. (2004), New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters, Oil and Gas Science and Technology, Vol. 59, No. 6, 571–579.
  • 55. Johnson J.M. (1983), US4596119A Compressed air propulsion system for a vehicle.
  • 56. Joshi A., Johnson T. V. (2018), Gasoline Particulate Filters — a Review, Emission Control Science and Technology, 4, 219–239.
  • 57. Joshi M.C., Gosala D.B., Allen C.M., Vos K., Van Voorhis M., Taylor A., Shaver G.M., McCarthy J., Stretch D., Koeberlein E., Farrell L. (2017), Reducing Diesel Engine Drive Cycle Fuel Consumption through Use of Cylinder Deactivation to Maintain Aftertreatment Component Temperature during Idle and Low Load Operating Conditions, Frontiers in Mechanical Engineering, 3, 1-15.
  • 58. Kakaee A.H., Nasiri-Toosi A., Partovi B., Paykani A. (2016), Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine, Applied Thermal Engineering, Vol. 102, 1462-1472.
  • 59. Kamguia Simeu S., Kim N. (2018), Standard Driving Cycles Comparison (IEA) & Impacts on the Ownership Cost, SAE Technical Papers, 2018-01-0423, 1-12.
  • 60. Kamiński M., Korbut M., Szpica D. (2020), Piston pneumatic engine - Preliminary research, Transport Means - Proceedings of the International Conference, Vol. 24, 126–131.
  • 61. Katoch S.S., Eswaramoorthy M. (2020), A Detailed Review on Electric Vehicles Battery Thermal Management System, IOP Conference Series: Materials Science and Engineering, 912, 1- 11.
  • 62. Keav S., Matam S.K., Ferri D., Weidenkaff A. (2014), Structured perovskite-based catalysts and their application as Three-Way Catalytic converters - a review, Catalysts, Vol. 4, 226–255.
  • 63. Khair M.K. (2003), A review of diesel particulate filter technologies, SAE Technical Papers, 2003-01-2303, 1-11.
  • 64. Khandal S. V., Banapurmath N.R., Gaitonde V.N. (2019), Performance studies on homogeneous charge compression ignition (HCCI) engine powered with alternative fuels, Renewable Energy, Vol. 132, 683–693.
  • 65. Kim J., Oh J., Lee H. (2019), Review on battery thermal management system for electric vehicles, Applied Thermal Engineering, Vol. 149, 192-212.
  • 66. Ko J., Kim K., Chung W., Myung C.L., Park S. (2019), Characteristics of on-road particle number (PN) emissions from a GDI vehicle depending on a catalytic stripper (CS) and a metal-foam gasoline particulate filter (GPF), Fuel, Vol. 238, 363–374.
  • 67. Kral J., Konecny B., Kral J., Madac K., Fedorko G., Molnar V. (2014), Degradation and chemical change of longlife oils following intensive use in automobile engines, Measurement: Journal of the International Measurement Confederation, Vol. 50, 34-42.
  • 68. Kumar V., Takkar J., Chitransh M., Kumar N., Banka U., Gupta U. (2014), Development of an advanced compressed air engine kit for small engine, SAE Technical Papers, 2014-01-1666, 1-11.
  • 69. Lambert C., Chanko T., Dobson D., Liu X., Pakko J. (2017), Gasoline Particle Filter Development, Emission Control Science and Technology, Vol. 3, 105–111.
  • 70. Latha H.S., Prakash K. V, Veerangouda M., Maski D., Ramappa K.T. (2019), A Review on SCR System for NOx Reduction in Diesel Engine, International Journal of Current Microbiology and Applied Sciences, Vol. 8, No. 4, 1553-1559.
  • 71. Lee N., Park J., Lee J., Park K., Choi M., Kim W. (2018), Estimation of fuel economy improvement in gasoline vehicle using cylinder deactivation, Energies, Vol. 11, 1-12.
  • 72. Li J., Chang H., Ma L., Hao J., Yang R.T. (2011), Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts - A review, Catalysis Today, Vol. 175, 147-156.
  • 73. Ligterink N., Mensch P., Cuelenaere R. (2016), NEDC – WLTP comparative testing, TNO report: TNO, Vol. R11285, 1-29.
  • 74. Liu T., Wu Z. (2015), Modeling of top scroll profile using equidistant-curve approach for a scroll compressor, Mathematical Problems in Engineering, 1-8.
  • 75. Lund H., Salgi G. (2009), The role of compressed air energy storage (CAES) in future sustainable energy systems, Energy Conversion and Management, Vol. 50, 1172-1179.
  • 76. Luo X., Wang J., Dooner M., Clarke J., Krupke C. (2014), Overview of current development in compressed air energy storage technology, Energy Procedia, Vol. 62, 603-611.
  • 77. Manoharan Y., Hosseini S.E., Butler B., Alzhahrani H., Senior B.T.F., Ashuri T., Krohn J. (2019), Hydrogen fuel cell vehicles; Current status and future prospect, Applied Sciences (Switzerland), Vol. 9, 1-17.
  • 78. Mazumder H., Al Emran Hassan M.M., Ektesabi M., Kapoor A. (2012), Performance analysis of EV for different mass distributions to ensure safe handling, Energy Procedia, Vol. 14, 949-954,
  • 79. Mieczkowski G. (2016), Electromechanical characteristics of piezoelectric converters with freely defined boundary conditions and geometry, Mechanika, Vol. 22, No. 4, 265-272.
  • 80. Mieczkowski G. (2016), Stress fields at the tip of a sharp inclusion on the interface of a bimaterial, Mechanics of Composite Materials, Vol. 52, No. 5, 601-610.
  • 81. Mikulski M., Balakrishnan P.R., Doosje E., Bekdemir C. (2018), Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine, SAE Technical Papers, 2018-01-0254, 1-14.
  • 82. Miller T.R. (1980), US4370857A Pneumatic system for compressed air driven vehicle.
  • 83. Mishra K.R., Sugandh G. (2014), Study About Engine Operated By Compressed Air (C.A.E): A Pneumatic Power Source, Journal of Mechanical and Civil Engineering. Vol. 11, 99–103.
  • 84. Mitukiewicz G., Dychto R., Leyko J. (2015), Relationship between LPG fuel and gasoline injection duration for gasoline direct injection engines, Fuel, Vol. 153, 526–534.
  • 85. Morrow K., Karner D., Francfort J. (2008), Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle Charging Infrastructure Review Novem Charging Infrastructure Review, U. S. Department of Energy Vehicle Technologies Program, Vol. 34, 1-40.
  • 86. Muhamad Said M.F., Abdul Aziz A., Abdul Latiff Z., Mahmoudzadeh Andwari A., Mohamed Soid S.N. (2014), Investigation of Cylinder Deactivation (CDA) Strategies on Part Load Conditions, SAE Technical Papers, 2014-01-2549, 1-7.
  • 87. Myagkov L.L., Mahkamov K., Chainov N.D., Makhkamova I. (2014), Advanced and conventional internal combustion engine materials, Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, 370-392.
  • 88. Myung C.L., Lee H., Choi K., Lee Y.J., Park S. (2009), Effects of gasoline, diesel, LPG, and low-carbon fuels and various certification modes on nanoparticle emission characteristics in light-duty vehicles, International Journal of Automotive Technology, Vol. 10, 537–544.
  • 89. Nabil T. (2019), Investigation and implementation of compressed air powered motorbike engines, Engineering Reports, Vol. 1, 1–13.
  • 90. Olesky L.M., Lavoie G.A., Assanis D.N., Wooldridge M.S., Martz J.B. (2014), The effects of diluent composition on the rates of HCCI and spark assisted compression ignition combustion, Applied Energy, Vol. 124, 186–198.
  • 91. Onishi S., Jo S.H., Shoda K., Jo P.D., Kato S. (1979), Active Thermo-Atmosphere Combustion (ATAC) - A new combustion process for internal combustion engines, SAE Technical Papers, 790501, 1-12.
  • 92. Papson A., Creutzig F., Schipper L. (2010), Compressed air vehicles: Drive-cycle analysis of vehicle performance, environmental impacts, and economic costs, Transportation Research Record, Vol. 2191, 67–74.
  • 93. Pavlovic J., Marotta A., Ciuffo B. (2016), CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures, Applied Energy, 177, 661-670.
  • 94. Pesaran A. (2001), Battery Thermal Management in EVs and HEVs : Issues and Solutions, Advanced Automotive Battery Conference, Vol. 10, 1-10.
  • 95. Puškár M., Jahnátek A., Kádárová J., Šoltésová M., Kovanič Ľ., Krivosudská J. (2019), Environmental study focused on the suitability of vehicle certifications using the new European driving cycle (NEDC) with regard to the affair “dieselgate” and the risks of NO x emissions in urban destinations, Air Quality, Atmosphere and Health, Vol. 12, No. 2, 251–257.
  • 96. Radhakrishna L., Gopikrishna N. (2017), Prefabricating and testing of air driven engine, International Journal of Mechanical Engineering and Technology, Vol. 8, 238–251.
  • 97. Raslavičius L., Azzopardi B., Keršys A., Starevičius M., Bazaras Ž., Makaras R. (2015), Electric vehicles challenges and opportunities: Lithuanian review, Renewable and Sustainable Energy Reviews, Vol. 42, 786–800.
  • 98. Raslavičius L., Keršys A., Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, Vol. 68, 380–396.
  • 99. Reitz R.D., Duraisamy G. (2015), Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines, Progress in Energy and Combustion Science, Vol. 46, 12–71.
  • 100. Robertson D., Prucka R. (2019), A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies, SAE Technical Papers, 2019-24-0027, 1-18.
  • 101. Saiteja P., Ashok B. (2021), A critical insight review on homogeneous charge compression ignition engine characteristics powered by biofuels, Fuel, Vol. 285, 1-34.
  • 102. Santos H., Costa M. (2008), Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters, Energy Conversion and Management, Vol. 49, 291–300.
  • 103. Sen B., Onat N.C., Kucukvar M., Tatari O. (2019), Material footprint of electric vehicles: A multiregional life cycle assessment, Journal of Cleaner Production, Vol. 209, 1033-1043.
  • 104. Sergaliyev A.S., Khajiyeva L.A. (2017), Experimental Research and Mathematical Modeling of Scroll Machine in Air Motor Mode, Advances in Mechanism Design II, 145–151.
  • 105. Shi Y., Li F., Cai M., Yu Q. (2016), Literature review: Present state and future trends of air-powered vehicles, Journal of Renewable and Sustainable Energy, Vol. 8.
  • 106. Shuai S., Ma X., Li Y., Qi Y., Xu H. (2018), Recent Progress in Automotive Gasoline Direct Injection Engine Technology, Automotive Innovation, Vol. 1, 95-113.
  • 107. Sileghem L., Bosteels D., May J., Favre C., Verhelst S. (2014), Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC, Transportation Research Part D: Transport and Environment, Vol. 32, 70–85.
  • 108. Szoka W., Szpica D. (2012), Adaptation of classic combustion engines to compressed air supply, Acta Mechanica et Automatica, Vol. 6, 68-73.
  • 109. Szpica D. (2019), Coefficient of Engine Flexibility as a Basis for the Assessment of Vehicle Tractive Performance, Chinese Journal of Mechanical Engineering (English Edition), Vol. 32, 1-9.
  • 110. Szpica D., Korbut M. (2019), Modelling Methodology of Piston Pneumatic Air Engine Operation, Acta Mechanica et Automatica, Vol. 13, 271–278.
  • 111. Szpica D., Korbut M. (2020), Model assessment of inlet timing system impact on cylinder indicated pressure course of piston pneumatic engine, Engineering for Rural Development, Vol. 19, 711–720.
  • 112. Szpica D., Piwnik J., Sidorowicz M. (2014), The motion storage characteristics as the indicator of stability of internal combustion engine - receiver cooperation, Mechanika, Vol. 20, No. 1, 108-112.
  • 113. Thipse S.S. (2008), Compressed air car, Tech Monitor, 6, 33–37.
  • 114. Thiruvengadam A., Besch M., Padmanaban V., Pradhan S., Demirgok B. (2018), Natural gas vehicles in heavy-duty transportation - A review, Energy Policy, Vol. 122, 253-259.
  • 115. Usman M., Farooq M., Naqvi M., Saleem M.W., Hussain J., Naqvi S.R., Jahangir S., Jazim Usama H.M., Idrees S., Anukam A. (2020), Use of gasoline, LPG and LPG-HHO blend in SI engine: A comparative performance for emission control and sustainable environment, Processes, Vol. 8, No. 74, 1-15.
  • 116. Varella R., Duarte G., Baptista P., Sousa L., Villafuerte P. (2017), Comparison of Data Analysis Methods for European Real Driving Emissions Regulation, SAE Technical Papers, 2017-01-0997, 1-14.
  • 117. Wagner W.C. (1975), US4124978A Compressed air engine.
  • 118. Wang J., Lu K., Ma L., Wang J., Dooner M., Miao S., Li J., Wang D. (2017), Overview of compressed air energy storage and technology development, Energies, Vol. 10, 1-22.
  • 119. Wang Y.W., You J.J., Sung C.K., Huang C.Y. (2014), The applications of piston type compressed air engines on motor vehicles, Procedia Engineering, Vol. 79, 61–65.
  • 120. Wang Z., He X., Wang J.X., Shuai S., Xu F., Yang D. (2010), Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines, Energy Conversion and Management, Vol. 51, No. 5, 908–917.
  • 121. Warguła Ł., Kukla M. (2020), Determination of maximum torque during carpentry waste comminution, Wood Research, Vol. 65, 771-784.
  • 122. Wasbari F., Bakar R.A., Gan L.M., Tahir M.M., Yusof A.A. (2017), A review of compressed-air hybrid technology in vehicle system, Renewable and Sustainable Energy Reviews, Vol. 67, 935–953.
  • 123. Weaver C.S. (1989), Natural gas vehicles - A review of the state of the art, SAE Technical Papers, 892133, 1-24.
  • 124. Wittig K. (1925), US1726462A Compressed-air engine.
  • 125. Wu W., Wang S., Wu W., Chen K., Hong S., Lai Y. (2019), A critical review of battery thermal performance and liquid based battery thermal management, Energy Conversion and Management, Vol. 182, 262-281.
  • 126. Xia W., Zheng Y., He X., Yang D., Shao H., Remias J., Roos J., Wang Y. (2017), Catalyzed Gasoline Particulate Filter (GPF) Performance: Effect of Driving Cycle, Fuel, Catalyst Coating, SAE Technical Papers, 2017-01-2366, 1-9.
  • 127. Xingcai L., Libin J., Junjun M., Chen H., Zhen H. (2008), Effects of an In-Cylinder Active Thermo-Atmosphere Environment on Diesel Engine Combustion Characteristics and Emissions, Energy Fuels, Vol. 22, No. 5, 2991–2996.
  • 128. Yang J., Roth P., Durbin T.D., Johnson K.C., Cocker D.R., Asa-Awuku A., Brezny R., Geller M., Karavalakis G. (2018), Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles, Environmental Science and Technology, 52(5), 3275-3284.
  • 129. Yang Q.C., Zhao Y.Y., Li L.S., Qian Z.G. (2013), Investigation on working characteristics of micro compressed air energy storage system, Institution of Mechanical Engineers - 8th International Conference on Compressors and Their Systems, 151-159.
  • 130. Yeh S. (2007), An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles, Energy Policy, Vol. 35, No. 11, 5865-5875.
  • 131. Zhang C., Yan B., Wieberdink J., Li P.Y., Van De Ven J.D., Loth E., Simon T.W. (2014), Thermal analysis of a compressor for application to Compressed Air Energy Storage, Applied Thermal Engineering, Vol. 73, No. 2, 1402-1411.
  • 132. Zhao C., Zhang B., Zheng Y., Huang S., Yan T., Liu X. (2020), Hybrid Battery Thermal Management System in Electrical Vehicles: A Review, Energies, Vol. 13, 1-18.
  • 133. Zhou Q., Du D., Lu C., He Q., Liu W. (2019), A review of thermal energy storage in compressed air energy storage system, Energy. Vol. 188.
  • 134. Zhou, S. Walker P., Zhang N. (2020), Parametric design and regenerative braking control of a parallel hydraulic hybrid vehicle, Mechanism and Machine Theory, Vol. 146, 1-15.
  • 135. Zwierzchowski J. (2017), Design type air engine Di Pietro, EPJ Web of Conferences, Vol. 143, 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35651837-6491-46a9-ab44-bfa2f48211fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.