PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability and availability modelling of a retrofitted Diesel-based cogeneration system for heat and hot water demand of an isolated Antarctic base

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reduction of greenhouse gas emissions is a relevant challenge for a sustainable development. Waste heat could be used to produce hot water by using a recovery system. This article studies the availability of a combined heat and power systems (CHP) in extreme area (Antarctic) through the integration of a waste heat recovery system with a diesel generator to produce hot water. The reliability and availability principles are incorporated to explore how the profile of hot water consumption and the hot water storage tank size affect system availability. Different combined heat and power systems are thus classified, and their availability indexes modelled by adopting the continuous Markov approach and the state space model. The results indicate that the CHP systems availability is strongly influenced by the daily hot water demand profile. As a useful recommendation, one of the considerations for increasing availability, reducing costs and greenhouse gas emissions with the CHP system is to include a hot water tank in the analysis.
Rocznik
Strony
art. no. 169779
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Industrial Engineering Department, Universidad Técnica Federico Santa María, Chile
  • Aix Marseille Université, CNRS, IUSTI, Marseille, France
  • EPROIC Ingeniería y Construcción Ltda, Viña del Mar, Chile
  • Industrial Engineering Department, Universidad Técnica Federico Santa María, Chile
Bibliografia
  • 1. Araya R, Bustos F, Contreras J, Fuentes A. Life-cycle savings for a flat-plate solar water collector plant in Chile. Renewable Energy. 2017; 112:365–77. doi:10.1016/j.renene.2017.05.036.
  • 2. Asaee SR, Ugursal VI, Beausoleil-Morrison I. An investigation of the techno-economic impact of internal combustion engine based cogeneration systems on the energy requirements and greenhouse gas emissions of the Canadian housing stock. Applied Thermal Engineering. 2015; 87:505–18. doi:10.1016/j.applthermaleng.2015.05.031.
  • 3. Asaee SR, Ugursal VI, Beausoleil-Morrison I. Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses – A preliminary study. Applied Energy. 2015; 140:171–83. doi:10.1016/j.apenergy.2014.11.068.
  • 4. Azarkish H, Rashki M. Reliability and reliability-based sensitivity analysis of shell and tube heat exchangers using Monte Carlo Simulation. Applied Thermal Engineering. 2019;159:113842. doi:10.1016/j.applthermaleng.2019.113842.
  • 5. Billinton R, Allan RN. Reliability evaluation of engineering systems: Concepts and Techniques. New York: Springer; 1992. doi:10.1007/978-1-4899-0685-4.
  • 6. Cai B, Li H, Hu Y, Zhang G. Operation strategy and suitability analysis of CHP system with heat recovery. Energy and Buildings. 2017; 141:284–94. doi:10.1016/j.enbuild.2017.02.056.
  • 7. Conklin JC, Szybist JP. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery. Energy. 2010; 35(4):1658–64. doi:10.1016/j.energy.2009.12.012.
  • 8. Deelaman W, Pongpiachan S, Tipmanee D, Suttinun O, Choochuay C, Iadtem N, Charoenkalunyuta T, Promdee K. Source apportionment of polycyclic aromatic hydrocarbons in the terrestrial soils of King George Island, Antarctica. Journal of South American Earth Sciences. 2020; 104:102832. doi:10.1016/j.jsames.2020.102832.
  • 9. Dincer I, Rosen MA. Chapter 12 - Exergy analysis of cogeneration and district energy systems. In: Dincer I, Rosen MA, editors. Exergy. Amsterdam: Elsevier; 2007. p. 257–76. doi:10.1016/B978-008044529-8.50015-X.
  • 10. Farhat O, Faraj J, Hachem F, Castelain C, Khaled M. A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations. Cleaner Engineering and Technology. 2022; 6:100387. doi:10.1016/j.clet.2021.100387.
  • 11. Gang W, Wang S, Xiao F, Gao D ce. Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability. Applied Energy. 2015; 159:265–75. doi:10.1016/j.apenergy.2015.08.070.
  • 12. Ge Z, Zhang Y, Wang F, Luo X, Yang Y. Virtual–real fusion maintainability verification based on adaptive weighting and truncated spot method. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(4):738-746. https://doi.org/10.17531/ein.2022.4.14
  • 13. Georgilakis PS, Katsigiannis YA. Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources. Renewable Energy. 2009;34(1):65–70. doi:10.1016/j.renene.2008.03.004.
  • 14. Haghifam MR, Manbachi M. Reliability and availability modelling of combined heat and power (CHP) systems. International Journal of Electrical Power & Energy Systems. 2011;33(3):385–93. doi:10.1016/j.ijepes.2010.08.035.
  • 15. Hatami M, Ganji DD, Gorji-Bandpy M. A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renewable and Sustainable Energy Reviews. 2014; 37:168–81. doi:10.1016/j.rser.2014.05.004.
  • 16. Hoang AT. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Applied Energy. 2018; 231:138–66. doi:10.1016/j.apenergy.2018.09.022.
  • 17. Jiang J, Wei X, Gao W, Kuroki S, Liu Z. Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems. Energies. 2018;11(6). doi:10.3390/en11061519.
  • 18. Jiang J, Gao W, Wei X, Li Y, Kuroki S. Reliability and cost analysis of the redundant design of a combined cooling, heating and power (CCHP) system. Energy Conversion and Management. 2019; 199:111988. doi:10.1016/j.enconman.2019.111988.
  • 19. Karki R, Billinton R. Cost-effective wind energy utilization for reliable power supply. IEEE Transactions on Energy Conversion. 2004 Jun;19(2):435–40. doi:10.1109/TEC.2003.822293.
  • 20. Kozłowski E, Borucka A, Świderski A. Application of the logistic regression for determining transition probability matrix of operating states in the transport systems. Eksploatacja i Niezawodność – Maintenance and Reliability. 2020;22(2):192-200. http://dx.doi.org/10.17531/ein.2020.2.2.
  • 21. Kristjanpoller F, Crespo A, Barberá L, Viveros P. Biomethanation plant assessment based on reliability impact on operational effectiveness. Renewable Energy. 2017; 101:301–10. doi:10.1016/j.renene.2016.08.065.
  • 22. Kristjanpoller F, Viveros P, Zio E, Pascual R, Aranda O. Equivalent availability index for the performance measurement of haul truck fleets. Eksploatacja i Niezawodność. 2020;22(4):583–91. doi:10.17531/ein.2020.4.1.
  • 23. Lingeswara S, Omar R, Ghazi TIM. Reliability analysis on a shell and tube heat exchanger. IOP Conference Series: Earth and Environmental Science. 2016 Jun;36(1):012012. doi:10.1088/1755-1315/36/1/012012.
  • 24. Luján JM, Climent H, Dolz V, Moratal A, Borges-Alejo J, Soukeur Z. Potential of exhaust heat recovery for intake charge heating in a diesel engine transient operation at cold conditions. Applied Thermal Engineering. 2016; 105:501–8. doi:10.1016/j.applthermaleng.2016.03.028.
  • 25. Macchi M, Kristjanpoller F, Garetti M, Arata A, Fumagalli L. Introducing buffer inventories in the RBD analysis of process production systems. Reliability Engineering & System Safety. 2012; 104:84–95. doi:10.1016/j.ress.2012.03.015.
  • 26. Oszczypała M, Ziółkowski J, Małachowski J. Semi-Markov approach for reliability modelling of light utility vehicles. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023:1 25(2). https://doi.org/10.17531/ein/161859.
  • 27. Pandiyarajan V, Pandian MC, Malan E, Velraj R, Seeniraj RV. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Applied Energy. 2011;88(1):77–87. doi:10.1016/j.apenergy.2010.07.023.
  • 28. Performance test for solar plus Supplementary Systems [Internet]. Vol. 1997. Geneva, CH: International Organization for Standardization; 1997 Mar. Available from: https://www.iso.org/standard/20488.html.
  • 29. Rodríguez LR, Lissén JMS, Ramos JS, Jara EÁR, Domínguez SÁ. Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems. Applied Energy. 2016; 165:828–38. doi:10.1016/j.apenergy.2015.12.080.
  • 30. Rusin A, Tomala M. Steam turbine maintenance planning based on forecasting of life consumption processes and risk analysis. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(3):1. https://doi.org/10.17531/ein.2022.3.1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-355f2844-d80b-4534-b835-6824ae0a0c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.