PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cutting layer and cutting forces in a 5-axis milling of sculptured surfaces using the toroidal cutter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this article was to evaluate the significance of the influence of five- axis orientation parameters of a toroidal cutter axis and the geometrical parameters of the machined sculptured surface on the intersection of the cut layer in a 5-axis machining. An impact assessment was performed by simulating concave-convex and convex-concave surfaces using a discrete method of direct transformation in a CAD environment. It was shown that only the radius of curvature of the surface in the feed direction and the angle of the tool axis affected the change in the intersection of the cutting layer. Subsequently, experimental tests were conducted that aimed at determining the mathematical models of the influence of these important parameters on the components of the cutting force. The object of the experimental studies was a convex and concave surface of a turbine blade of Inconel 718 alloy. The R300-016B20L-08L Sandvik Coromant toroid cutter was used for the tests. Based on the results of the study it was found that the lead angle in the machining of the convex surface and concave turbine blade should be continuously varied with the change of radius of curvature in the direction of the machined surface profile.
Rocznik
Strony
98--122
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • The Rzeszow University of Technology, Department of Manufacturing Techniques and Automation, 2 W. Pola Street, 35-959, Rzeszow, Poland
autor
  • The Rzeszow University of Technology, Department of Manufacturing Techniques and Automation, 2 W. Pola Street, 35-959, Rzeszow, Poland
Bibliografia
  • [1] ZHANG X., YU T., WANG W., 2014, Modeling, simulation, and optimization of five-axis milling processes, The International Journal of Advanced Manufacturing Technology, 74/9-12, 1611-1624.
  • [2] FUSSELL B.K., JERARD R.B., HEMMETT J.G., 2003, Modeling of cutting geometry and forces for 5-axis sculptured surface machining, Computer-Aided Design, 35, 333-346.
  • [3] BAILEY T., ELBESTAWI M.A, EL-WARDANY T.I., FITZPATRICK P., 2002, Generic simulation approach for multi-axis machining, Part 1: Modeling methodology, Journal of Manufacturing Science and Engineering, 124, 624-633.
  • [4] BUDAK E., OZTURK E., TUNC L.T., 2009, Modeling and simulation of 5-axis milling processes, CIRP Annals-Manufacturing Technology, 58/1, 347-350.
  • [5] KAWALEC A., MAGDZIAK M., 2017, The selection of radius correction method in the case of coordinate measurements applicable for turbine blades, Precision Engineering, 49, 243-252.
  • [6] MAGDZIAK M., 2017, The influence of a number of points on results of measurements of a turbine blade, Aircraft Engineering and Aerospace Technology, 89/6, 953-959.
  • [7] ERDIM H., LAZOGLU I., OZTURK B., 2006, Feedrate scheduling strategies for free-form surfaces, International Journal of Machine Tools and Manufacture, 46, 747-757.
  • [8] ERDIM H., LAZOGLU I., KAYMAKCI M., 2007, Free-form surface machining and comparing feedrate scheduling strategies, Machining Science and Technology, 11, 117-133.
  • [9] FERRRY W.B., ALTINTAS Y., 2008, Virtual five-axis flank milling of jet engine impellers – Part I: Mechanics of five-axis flank milling, Journal of Manufacturing Science and Engineering, 130, 51-61.
  • [10] GDULA M., BUREK J., ŻYŁKA Ł., 2014, Cross section of the cutting layer in simultaneous five-axis machining of sculptured surfaces, Archives of Mechanical Technology and Automation, 34/4, 25-36.
  • [11] GDULA M., BUREK J., ŻYŁKA Ł., TUREK P., 2014, Analysis of accuracy of the shape of sculptured surfaces in simultaneous five-axis machining of parts made from difficult to machine materials used in aviation technology, Archives of Mechanical Technology and Automation, 34/4, 11-24.
  • [12] OZTURK E., BUDAK E., 2007, Modeling of 5-axis milling processes, Machining Science and Technology: An International Journal, 11, 287-311.
  • [13] DAVIM J.P., 2012, Machining of complex sculptured surfaces, Springer-Verlag, London.
  • [14] RADZEVICH P.S., 2014, Generation of surface machining. CRC Press Taylor and Francis Group, New York.
  • [15] GILLES P., COHEN G., MONIES F., 2013, Torus cutter positioning in five-axis milling using balance of the transversal cutting force, International Journal Advanced Manufacturing Technology, 66, 965-973.
  • [16] MAGDZIAK M., 2016, An algorithm of form deviation calculation in coordinate measurements of free-form surfaces of products, Strojniški vestnik - Journal of Mechanical Engineering, 1/62, 51-59.
  • [17] ALTMÜLER S., 2001, Simultanes fünfachsiges Fräsen von Freiformflächen aus Titan, Doctoral Dissertation, Aachen.
  • [18] GDULA M., 2017, Process of simultaneous five-axis milling of sculptured surfaces of the toroidal cutter, Doctoral Dissertation, Rzeszów.
  • [19] OZTURK E., TUNC T., BUDAK E., 2009, Investigation of lead and tilt angle effects in 5-axis ball-end milling processes, International Journal of Machine Tools and Manufacture, 49/14, 1053-1062.
  • [20] HENDRIKO H., KISWANTO G., ISTIYANTO J., DUC E., 2017, Implementation of analytical boundary simulation method for cutting force prediction model in five-axis milling, Machining Science and Technology: An International Journal, 1-17.
  • [21] SADILEK M., CEP R., BUDAK I., SOKOVIC M., 2011, Aspects of using tool axis inclination angle, Journal of Mechanical Engineering, 57, 681-688.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-355c81bf-b6f7-4c18-a2a0-87fb1dd5f211
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.